

A122716


Primes of the form p^2 + q^10 where p and q are primes.


0



1033, 1049, 1193, 1553, 2393, 3833, 6353, 10433, 11633, 12473, 19793, 25673, 38273, 50753, 52553, 55313, 59053, 67073, 95273, 98993, 101513, 114593, 158633, 197273, 215393, 300233, 376793, 381713, 427433, 459353, 553073, 620393, 735473, 787793
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

p and q cannot both be odd. Thus p=2 or q=2. There are rarer primes of the form 2^2 + q^10 such as 2^2 + 3^10 = 59053 and 2^2 + 5^10 = 9765629 and 2^2 + 13^10 = 137858491853. Hence most solutions are of the form 2^10 + q^2 and (except for rarer solutions such as 5^2 + 2^10 = 1049 and 2^2 + 5^10 = 9765629, no more with the larger prime under 100) are congruent to 3 mod 10.


LINKS



FORMULA



EXAMPLE

a(1) = 3^2 + 2^10 = 1033.
a(2) = 5^2 + 2^10 = 1049.
a(3) = 13^2 + 2^10 = 1193.
a(4) = 23^2 + 2^10 = 1553.


MATHEMATICA

Take[Select[Sort[Table[Prime@p^2 + Prime@q^10, {p, 200}, {q, 3}] // Flatten], PrimeQ@# &], 34] (* Robert G. Wilson v, Sep 26 2006 *)


CROSSREFS

Cf. A000040, A045700 Primes of form p^2+q^3 where p and q are prime, A122617 Primes of form p^3+q^4 where p and q are primes.


KEYWORD

easy,nonn


AUTHOR



EXTENSIONS



STATUS

approved



