The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A122617 Primes of the form p^3 + q^4 where p and q are primes. 3
 43, 89, 359, 2213, 300779, 4330763, 13997537, 36264707, 49430879, 62570789, 223648559, 251239607, 393832853, 423564767, 620650493, 746142659, 973242287, 1102302953, 1160935667, 1284365519, 1393668629, 1784770613, 1892819069, 3261545603, 4306878899 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS p and q cannot both be odd. Thus p=2 or q=2. Except for 2^3 + 3^4 = 89, all such primes are of the form 2^4 + q^3. LINKS FORMULA {a(n)} = {p^3 + q^4 in A000040 where p and q are in A000040}. EXAMPLE a(1) = 2^4 + 3^3 = 43. a(2) = 2^3 + 3^4 = 89. a(3) = 2^4 + 7^3 = 359. a(4) = 2^4 + 13^3 = 2213. a(5) = 2^4 + 67^3 = 300779. a(6) = 2^4 + 163^3 = 4330763. a(7) = 2^4 + 241^3 = 13997537. MATHEMATICA upto=45*10^9; With[{c=PrimePi[Ceiling[Power[upto-16, (3)^-1]]]}, Sort[ Join[ {89}, Select[#+16&/@(Prime[Range[2, c]]^3), PrimeQ]]]] (* Harvey P. Dale, Jul 08 2011 *) CROSSREFS Cf. A000040, A045700 Primes of form p^2+q^3 where p and q are primes. Sequence in context: A108394 A288641 A141924 * A306114 A044181 A044562 Adjacent sequences:  A122614 A122615 A122616 * A122618 A122619 A122620 KEYWORD easy,nonn AUTHOR Jonathan Vos Post, Sep 21 2006 EXTENSIONS More terms from Harvey P. Dale, Jul 07 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 7 06:02 EDT 2020. Contains 336274 sequences. (Running on oeis4.)