login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A153177
a(n) = L(9*n)/L(n) where L(n) = Lucas number A000204(n).
5
76, 1926, 109801, 4769326, 230701876, 10716675201, 505618944676, 23714405408926, 1114769987764201, 52357935173823126, 2459933168462154076, 115560463558534156801, 5428954301161174383676, 255043991670277234750326
OFFSET
1,1
COMMENTS
All numbers in this sequence are:
congruent to 1 mod 100 (iff n is congruent to 0 mod 3),
congruent to 26 mod 100 (iff n is congruent to 2 or 4 mod 6),
congruent to 76 mod 100 (iff n is congruent to 1 or 5 mod 6).
LINKS
Index entries for linear recurrences with constant coefficients, signature (34,714,-4641,-12376,12376,4641,-714,-34,1).
FORMULA
From R. J. Mathar, Oct 22 2010: (Start)
a(n) = 34*a(n-1) +714*a(n-2) -4641*a(n-3) -12376*a(n-4) +12376*a(n-5) +4641*a(n-6) -714*a(n-7) -34*a(n-8) +a(n-9).
G.f.: -x*(76-658*x-9947*x^2+13644*x^3+26020*x^4-5306*x^5-1372*x^6+42*x^7 +x^8) / ((x-1)*(x^2+18*x+1)*(x^2-47*x+1)*(x^2+3*x+1)*(x^2-7*x+1)).
a(n) = 1-(-1)^n*A087215(n) -(-1)^n*A005248(n) +A056854(n) +A087265(n). (End)
MATHEMATICA
Table[LucasL[9*n]/LucasL[n], {n, 1, 50}]
LinearRecurrence[{34, 714, -4641, -12376, 12376, 4641, -714, -34, 1}, {76, 1926, 109801, 4769326, 230701876, 10716675201, 505618944676, 23714405408926, 1114769987764201}, 20] (* Harvey P. Dale, Aug 12 2012 *)
PROG
(PARI) {lucas(n) = fibonacci(n+1) + fibonacci(n-1)};
for(n=0, 30, print1( lucas(9*n)/lucas(n), ", ")) \\ G. C. Greubel, Dec 21 2017
(Magma) [Lucas(9*n)/Lucas(n): n in [0..30]]; // G. C. Greubel, Dec 21 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Artur Jasinski, Dec 20 2008
STATUS
approved