login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A087265
Lucas numbers L(8*n).
10
2, 47, 2207, 103682, 4870847, 228826127, 10749957122, 505019158607, 23725150497407, 1114577054219522, 52361396397820127, 2459871053643326447, 115561578124838522882, 5428934300813767249007, 255044350560122222180447
OFFSET
0,1
COMMENTS
a(n+1)/a(n) converges to (47+sqrt(2205))/2 = 46.9787137... a(0)/a(1)=2/47; a(1)/a(2)=47/2207; a(2)/a(3)=2207/103682; a(3)/a(4)=103682/4870847; etc. Lim_{n->infinity} a(n)/a(n+1) = 0.02128623625... = 2/(47+sqrt(2205)) = (47-sqrt(2205))/2.
a(n) = a(-n). - Alois P. Heinz, Aug 07 2008
From Peter Bala, Oct 14 2019: (Start)
Let F(x) = Product_{n >= 0} (1 + x^(4*n+1))/(1 + x^(4*n+3)). Let Phi = 1/2*(sqrt(5) - 1). This sequence gives the partial denominators in the simple continued fraction expansion of the number F(Phi^8) = 1.0212763906... = 1 + 1/(47 + 1/(2207 + 1/(103682 + ...))).
Also F(-Phi^8) = 0.9787231991... has the continued fraction representation 1 - 1/(47 - 1/(2207 - 1/(103682 - ...))) and the simple continued fraction expansion 1/(1 + 1/((47 - 2) + 1/(1 + 1/((2207 - 2) + 1/(1 + 1/((103682 - 2) + 1/(1 + ...))))))).
F(Phi^8)*F(-Phi^8) = 0.9995468962... has the simple continued fraction expansion 1/(1 + 1/((47^2 - 4) + 1/(1 + 1/((2207^2 - 4) + 1/(1 + 1/((103682^2 - 4) + 1/(1 + ...))))))).
1/2 + 1/2*F(Phi^8)/F(-Phi^8) = 1.0217391349... has the simple continued fraction expansion 1 + 1/((47 - 2) + 1/(1 + 1/((103682 - 2) + 1/(1 + 1/(228826127 - 2) + 1/(1 + ...))))). (End)
REFERENCES
R. P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.
LINKS
Tanya Khovanova, Recursive Sequences
A. V. Zarelua, On Matrix Analogs of Fermat's Little Theorem, Mathematical Notes, vol. 79, no. 6, 2006, pp. 783-796. Translated from Matematicheskie Zametki, vol. 79, no. 6, 2006, pp. 840-855.
FORMULA
a(n) = 47*a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 47.
a(n) = ((47+sqrt(2205))/2)^n + ((47-sqrt(2205))/2)^n
(a(n))^2 = a(2n)+2.
G.f.: (2-47*x)/(1-47*x+x^2). - Alois P. Heinz, Aug 07 2008
From Peter Bala, Oct 14 2019: (Start)
a(n) = F(8*n+8)/F(8) - F(8*n-8)/F(8) = A049668(n+1) - A049668(n-1).
a(n) = trace(M^n), where M is the 2 X 2 matrix [0, 1; 1, 1]^8 = [13, 21; 21, 34].
Consequently the Gauss congruences hold: a(n*p^k) = a(n*p^(k-1)) ( mod p^k ) for all prime p and positive integers n and k. See Zarelua and also Stanley (Ch. 5, Ex. 5.2(a) and its solution).
45*Sum_{n >= 1} 1/(a(n) - 49/a(n)) = 1: (49 = Lucas(8) + 2 and 45 = Lucas(8) - 2)
49*Sum_{n >= 1} (-1)^(n+1)/(a(n) + 45/a(n)) = 1.
x*exp(Sum_{n >= 1} a(n)*x^/n) = x + 47*x^2 + 2208*x^3 + ... is the o.g.f. for A049668. (End)
E.g.f.: 2*exp(47*x/2)*cosh(21*sqrt(5)*x/2). - Stefano Spezia, Oct 18 2019
EXAMPLE
a(4) = 4870847 = 47*a(3) - a(2) = 47*103682 - 2207=((47+sqrt(2205))/2)^4 + ( (47-sqrt(2205))/2)^4 =4870846.999999794696 + 0.000000205303 = 4870847.
MAPLE
a:= n-> (Matrix([[2, 47]]). Matrix([[47, 1], [ -1, 0]])^(n))[1, 1]:
seq(a(n), n=0..14); # Alois P. Heinz, Aug 07 2008
MATHEMATICA
LucasL[8*Range[0, 20]] (* or *) LinearRecurrence[{47, -1}, {2, 47}, 20] (* Harvey P. Dale, Oct 23 2017 *)
PROG
(Magma) [ Lucas(8*n) : n in [0..100]]; // Vincenzo Librandi, Apr 14 2011
CROSSREFS
Cf. A000032. Cf. Lucas(k*n): A005248 (k = 2), A014448 (k = 3), A056854 (k = 4), A001946 (k = 5), A087215 (k = 6), A087281 (k = 7), A087287 (k = 9), A065705 (k = 10), A089772 (k = 11), A089775 (k = 12).
a(n) = A000032(8n).
Sequence in context: A246543 A119776 A373920 * A079307 A368193 A005814
KEYWORD
easy,nonn
AUTHOR
Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Oct 19 2003
EXTENSIONS
Terms a(22)-a(27) from John W. Layman, Jun 14 2004
STATUS
approved