The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A087265 Lucas numbers L(8*n). 10
 2, 47, 2207, 103682, 4870847, 228826127, 10749957122, 505019158607, 23725150497407, 1114577054219522, 52361396397820127, 2459871053643326447, 115561578124838522882, 5428934300813767249007, 255044350560122222180447 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS a(n+1)/a(n) converges to (47+sqrt(2205))/2 = 46.9787137... a(0)/a(1)=2/47; a(1)/a(2)=47/2207; a(2)/a(3)=2207/103682; a(3)/a(4)=103682/4870847; etc. Lim_{n->infinity} a(n)/a(n+1) = 0.02128623625... = 2/(47+sqrt(2205)) = (47-sqrt(2205))/2. a(n) = a(-n). - Alois P. Heinz, Aug 07 2008 From Peter Bala, Oct 14 2019: (Start) Let F(x) = Product_{n >= 0} (1 + x^(4*n+1))/(1 + x^(4*n+3)). Let Phi = 1/2*(sqrt(5) - 1). This sequence gives the partial denominators in the simple continued fraction expansion of the number F(Phi^8) = 1.0212763906... = 1 + 1/(47 + 1/(2207 + 1/(103682 + ...))). Also F(-Phi^8) = 0.9787231991... has the continued fraction representation 1 - 1/(47 - 1/(2207 - 1/(103682 - ...))) and the simple continued fraction expansion 1/(1 + 1/((47 - 2) + 1/(1 + 1/((2207 - 2) + 1/(1 + 1/((103682 - 2) + 1/(1 + ...))))))). F(Phi^8)*F(-Phi^8) = 0.9995468962... has the simple continued fraction expansion 1/(1 + 1/((47^2 - 4) + 1/(1 + 1/((2207^2 - 4) + 1/(1 + 1/((103682^2 - 4) + 1/(1 + ...))))))). 1/2 + 1/2*F(Phi^8)/F(-Phi^8) = 1.0217391349... has the simple continued fraction expansion 1 + 1/((47 - 2) + 1/(1 + 1/((103682 - 2) + 1/(1 + 1/(228826127 - 2) + 1/(1 + ...))))). (End) REFERENCES R. P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999. LINKS Indranil Ghosh, Table of n, a(n) for n = 0..596 Tanya Khovanova, Recursive Sequences A. V. Zarelua, On Matrix Analogs of Fermat's Little Theorem, Mathematical Notes, vol. 79, no. 6, 2006, pp. 783-796. Translated from Matematicheskie Zametki, vol. 79, no. 6, 2006, pp. 840-855. Index entries for recurrences a(n) = k*a(n - 1) +/- a(n - 2) Index entries for linear recurrences with constant coefficients, signature (47,-1). FORMULA a(n) = 47*a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 47. a(n) = ((47+sqrt(2205))/2)^n + ((47-sqrt(2205))/2)^n (a(n))^2 = a(2n)+2. G.f.: (2-47*x)/(1-47*x+x^2). - Alois P. Heinz, Aug 07 2008 From Peter Bala, Oct 14 2019: (Start) a(n) = F(8*n+8)/F(8) - F(8*n-8)/F(8) = A049668(n+1) - A049668(n-1). a(n) = trace(M^n), where M is the 2 X 2 matrix [0, 1; 1, 1]^8 = [13, 21; 21, 34]. Consequently the Gauss congruences hold: a(n*p^k) = a(n*p^(k-1)) ( mod p^k ) for all prime p and positive integers n and k. See Zarelua and also Stanley (Ch. 5, Ex. 5.2(a) and its solution). 45*Sum_{n >= 1} 1/(a(n) - 49/a(n)) = 1: (49 = Lucas(8) + 2 and 45 = Lucas(8) - 2) 49*Sum_{n >= 1} (-1)^(n+1)/(a(n) + 45/a(n)) = 1. x*exp(Sum_{n >= 1} a(n)*x^/n) = x + 47*x^2 + 2208*x^3 + ... is the o.g.f. for A049668. (End) E.g.f.: 2*exp(47*x/2)*cosh(21*sqrt(5)*x/2). - Stefano Spezia, Oct 18 2019 EXAMPLE a(4) = 4870847 = 47*a(3) - a(2) = 47*103682 - 2207=((47+sqrt(2205))/2)^4 + ( (47-sqrt(2205))/2)^4 =4870846.999999794696 + 0.000000205303 = 4870847. MAPLE a:= n-> (Matrix([[2, 47]]). Matrix([[47, 1], [ -1, 0]])^(n))[1, 1]: seq(a(n), n=0..14); # Alois P. Heinz, Aug 07 2008 MATHEMATICA LucasL[8*Range[0, 20]] (* or *) LinearRecurrence[{47, -1}, {2, 47}, 20] (* Harvey P. Dale, Oct 23 2017 *) PROG (Magma) [ Lucas(8*n) : n in [0..100]]; // Vincenzo Librandi, Apr 14 2011 CROSSREFS Cf. A000032. Cf. Lucas(k*n): A005248 (k = 2), A014448 (k = 3), A056854 (k = 4), A001946 (k = 5), A087215 (k = 6), A087281 (k = 7), A087287 (k = 9), A065705 (k = 10), A089772 (k = 11), A089775 (k = 12). a(n) = A000032(8n). Sequence in context: A246543 A119776 A373920 * A079307 A368193 A005814 Adjacent sequences: A087262 A087263 A087264 * A087266 A087267 A087268 KEYWORD easy,nonn AUTHOR Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Oct 19 2003 EXTENSIONS Terms a(22)-a(27) from John W. Layman, Jun 14 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 10 05:56 EDT 2024. Contains 375044 sequences. (Running on oeis4.)