login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089775
Lucas numbers L(12n).
9
2, 322, 103682, 33385282, 10749957122, 3461452808002, 1114577054219522, 358890350005878082, 115561578124838522882, 37210469265847998489922, 11981655542024930675232002, 3858055874062761829426214722, 1242282009792667284144565908482, 400010949097364802732720796316482
OFFSET
0,1
COMMENTS
a(n+1)/a(n) converges to (322 + sqrt(103680))/2 = 321.996894379... a(0)/a(1) = 2/322; a(1)/a(2) = 322/103682; a(2)/a(3) = 103682/33385282; a(3)/a(4) = 33385282/10749957122; etc. Lim_{n -> inf} a(n)/a(n+1) = 0.00310562... = 2/(322 + sqrt(103680)) = (322 - sqrt(103680))/2.
FORMULA
a(n) = 322*a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 322
a(n) = ((322 + sqrt(103680))/2)^n + ((322 - sqrt(103680))/2)^n.
(a(n))^2 = a(2n) + 2.
G.f.: (2-322*x)/(1-322*x+x^2). - Philippe Deléham, Nov 02 2008
EXAMPLE
a(4) = 10749957122 = 322*a(3) - a(2) = 322*33385282 - 103682 = ((322 + sqrt(103680))/2)^4 + ((322 - sqrt(103680))/2)^4.
MATHEMATICA
Table[LucasL[12n], {n, 0, 13}] (* Indranil Ghosh, Mar 15 2017 *)
PROG
(Magma) [ Lucas(12*n) : n in [0..70]]; // Vincenzo Librandi, Apr 15 2011
(PARI) Vec((2 - 322*x)/(1 - 322*x + x^2) + O(x^14)) \\ Indranil Ghosh, Mar 15 2017
CROSSREFS
a(n) = A000032(12n).
Row 9 * 2 of array A188644
Sequence in context: A221190 A367927 A192725 * A094402 A332132 A262637
KEYWORD
easy,nonn
AUTHOR
Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 09 2004
EXTENSIONS
a(11) - a(13) from Vincenzo Librandi, Apr 15 2011
STATUS
approved