login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060964
Table by antidiagonals where T(n,k) = n*T(n,k-1) - T(n,k-2) with T(n,0) = 2 and T(n,1) = n.
2
2, 0, 2, -2, 1, 2, 0, -1, 2, 2, 2, -2, 2, 3, 2, 0, -1, 2, 7, 4, 2, -2, 1, 2, 18, 14, 5, 2, 0, 2, 2, 47, 52, 23, 6, 2, 2, 1, 2, 123, 194, 110, 34, 7, 2, 0, -1, 2, 322, 724, 527, 198, 47, 8, 2, -2, -2, 2, 843, 2702, 2525, 1154, 322, 62, 9, 2, 0, -1, 2, 2207, 10084, 12098, 6726, 2207, 488, 79, 10, 2
OFFSET
0,1
FORMULA
For all m, T(n, k) = T(n, |m|)*T(n, |k - m|) - T(n, |k - 2m|).
T(n, 2k) = T(n, k)^2 - 2.
T(n, 2k + 1) = T(n, k)*T(n, k + 1) - n.
T(n, 3k) = T(n, k)^3 - 3*T(n, k).
T(n, 4k) = T(n, k)^4 - 4*T(n, k)^2 + 2.
T(n, 5k) = T(n, k)^5 - 5*T(n, k)^3 + 5*T(n, k) etc.
T(n, -k) = T(n, k).
T(-n, k) = T(-n, -k) = (-1)^k * T(n, k).
T(n, k) = ( n*( ((n + sqrt(n^2 -4))/2)^k - ((n - sqrt(n^2 -4))/2)^k ) - 2*( ((n + sqrt(n^2 -4))/2)^(k-1) - ((n - sqrt(n^2 -4))/2)^(k-1) ) )/sqrt(n^2 -4).
T(n, k) = n*ChebyshevU(k-1, n/2) - 2*ChebyshevU(k-2, n/2). - G. C. Greubel, Jan 15 2020
EXAMPLE
Square array begins as:
2, 0, -2, 0, 2, 0, -2, ...
2, 1, -1, -2, -1, 1, 2, ...
2, 2, 2, 2, 2, 2, 2, ...
2, 3, 7, 18, 47, 123, 322, ...
2, 4, 14, 52, 194, 724, 2702, ...
2, 5, 23, 110, 527, 2525, 12098, ...
MAPLE
seq(seq( simplify(k*ChebyshevU(n-k-1, k/2) -2*ChebyshevU(n-k-2, k/2)), k=0..n), n=0..12); # G. C. Greubel, Jan 15 2020
MATHEMATICA
Table[k*ChebyshevU[n-k-1, k/2] -2*ChebyshevU[n-k-2, k/2], {n, 0, 12}, {k, 0, n} ]//Flatten
PROG
(PARI) T(n, k) = n*polchebyshev(k-1, 2, n/2) -2*polchebyshev(k-2, 2, n/2);
for(n=0, 12, for(k=0, n, print1(T(k, n-k), ", "))) \\ G. C. Greubel, Jan 15 2020
(Magma)
function T(n, k)
if k eq 0 then return 2;
elif k eq 1 then return n;
else return n*T(n, k-1) - T(n, k-2);
end if; return T; end function;
[T(k, n-k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 15 2020
(Sage) [[k*chebyshev_U(n-k-1, k/2) -2*chebyshev_U(n-k-2, k/2) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jan 15 2020
(GAP)
T:= function(n, k)
if k=0 then return 2;
elif k=1 then return n;
else return n*T(n, k-1) - T(n, k-2);
fi; end;
Flat(List([0..12], n-> List([0..n], k-> T(k, n-k) ))); # G. C. Greubel, Jan 15 2020
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Henry Bottomley, May 09 2001
STATUS
approved