login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A007395
Constant sequence: the all 2's sequence.
(Formerly M0208)
125
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
OFFSET
1,1
COMMENTS
Continued fraction for 1 + sqrt(2). - Philippe Deléham, Nov 14 2006
a(n) = A213999(n,1). - Reinhard Zumkeller, Jul 03 2012
The least witness function W(k) is defined for odd composite numbers k. The sequence W(k) does not have its own entry in the OEIS because W(k) = 2 for all k with 9 <= k < 2047; then W(2047)=3. Cf. A089105. - N. J. A. Sloane, Sep 17 2014
a(n) = A254858(n-1,1). - Reinhard Zumkeller, Feb 09 2015
a(n) = number of permutations of length n+2 having exactly one ascent such that the first element the permutation is 2. - Ran Pan, Apr 20 2015
With alternating signs, this is the sequence of determinants of the 3 X 3 matrices m with m(i,j) = Fibonacci(n+i+j-2)^2. - Michel Marcus, Dec 23 2015
For p = prime(n+2), a(n) = ord_p(H_(p-1)), where ord_p denotes the p-adic valuation and H_i = 1 + 1/2 + ... + 1/i is a harmonic sum, except for n = 1944 and n = 157504, where ord_p(H_(p-1)) = 3, and any other term of A088164 that may exist (see Conrad link). The sequence a(n) = ord_p(H_(p-1)) does not have its own entry in the OEIS. - Felix Fröhlich, Mar 16 2016
This sequence is the only infinite bounded sequence of positive integers such that a(n) = (a(n-1) + a(n-2)) / gcd(a(n-1), a(n-2)) for all n >= 2. - Bernard Schott, Dec 28 2018
REFERENCES
Titu Andreescu and Dorin Andrica, Number Theory, Birkhäuser, 2009, from 1999 Russian Mathematical Olympiad, p. 347.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
25th All-Russian Mathematical Olympiad, Grade 10, Problem 2, p. 2, 1999.
Tobias Boege and Thomas Kahle, Construction Methods for Gaussoids, arXiv:1902.11260 [math.CO], 2019.
Daniele A. Gewurz and Francesca Merola, Sequences realized as Parker vectors of oligomorphic permutation groups, J. Integer Seqs., Vol. 6, 2003.
Tanya Khovanova, Recursive Sequences
Mihai Prunescu and Lorenzo Sauras-Altuzarra, On the representation of C-recursive integer sequences by arithmetic terms, arXiv:2405.04083 [math.LO], 2024. See p. 16.
Aram Tangboonduangjit and Thotsaporn Thanatipanonda, Determinants Containing Powers of Generalized Fibonacci Numbers, arXiv:1512.07025 [math.CO], 2015.
Eric Weisstein's World of Mathematics, Hamiltonian Cycle
Dominika Závacká, Cristina Dalfó, and Miquel Angel Fiol, Integer sequences from k-iterated line digraphs, CEUR: Proc. 24th Conf. Info. Tech. - Appl. and Theory (ITAT 2024) Vol 3792, 156-161. See p. 161, Table 2.
FORMULA
G.f.: 2/(1-x), and e.g.f.: 2*e^x. - Mohammad K. Azarian, Dec 22 2008
a(n) = A000005(A000040(n)). - Omar E. Pol, Feb 28 2018
a(n) = A002061(n) - A165900(n). - Torlach Rush, Feb 21 2019
MATHEMATICA
Table[2, {105}]
PROG
(PARI) a(n) = 2 \\ Charles R Greathouse IV, Apr 07 2012
(Haskell)
a007395 = const 2
a007395_list = repeat 2 -- Reinhard Zumkeller, May 07 2012
(Maxima) makelist(2, n, 0, 30); /* Martin Ettl, Nov 09 2012 */
(Python)
def A007395(n): return 2 # Chai Wah Wu, Nov 10 2022
KEYWORD
nonn,easy
STATUS
approved