login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211665
Minimal number of iterations of log_10 applied to n until the result is < 1.
0
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
OFFSET
1,10
COMMENTS
Different from A055642 and A138902, cf. Example.
Instead the real-valued log function one can consider only the integer part (i.e., A004216), since log_b(x) < k <=> x < b^k <=> floor(x) < b^k for any integer k >= 0; that's also why the first 2, 3, 4, ... appears exactly for 10, 10^10, 10^(10^10) etc. - M. F. Hasler, Dec 12 2018
FORMULA
With the definition E_{i=1..n} c(i) := c(1)^(c(2)^(c(3)^(...(c(n-1)^(c(n))))...))); E_{i=1..0} := 1; example: E_{i=1..3} 10 = 10^(10^10) = 10^10000000000, we have:
a(E_{i=1..n} 10) = a(E_{i=1..n-1} 10) + 1, for n >= 1.
G.f.: g(x) = 1/(1-x)*Sum_{k>=0} x^(E_{i=1..k} 10).
= (x + x^10 + x^(10^10) + ...)/(1-x).
EXAMPLE
a(n) = 1, 2, 3, 4 for n = 1, 10, 10^10, 10^(10^10), i.e., n = 1, 10, 10000000000, 10^10000000000.
a(n) = 2 for all n >= 10, n < 10^10.
MATHEMATICA
a[n_] := Length[NestWhileList[Log10, n, # >= 1 &]] - 1; Array[a, 100] (* Amiram Eldar, Dec 08 2018 *)
PROG
(PARI) a(n, i=1)={while(n=logint(n, 10), i++); i} \\ M. F. Hasler, Dec 07 2018
KEYWORD
base,nonn
AUTHOR
Hieronymus Fischer, Apr 30 2012
EXTENSIONS
Name reworded by M. F. Hasler, Dec 12 2018
STATUS
approved