

A211665


Minimal number of iterations of log_10 applied to n until the result is < 1.


0



1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,10


COMMENTS

Different from A055642 and A138902, cf. Example.
Instead the realvalued log function one can consider only the integer part (i.e., A004216), since log_b(x) < k <=> x < b^k <=> floor(x) < b^k for any integer k >= 0; that's also why the first 2, 3, 4, ... appears exactly for 10, 10^10, 10^(10^10) etc.  M. F. Hasler, Dec 12 2018


LINKS

Table of n, a(n) for n=1..94.


FORMULA

With the definition E_{i=1..n} c(i) := c(1)^(c(2)^(c(3)^(...(c(n1)^(c(n))))...))); E_{i=1..0} := 1; example: E_{i=1..3} 10 = 10^(10^10) = 10^10000000000, we have:
a(E_{i=1..n} 10) = a(E_{i=1..n1} 10) + 1, for n >= 1.
G.f.: g(x) = 1/(1x)*Sum_{k>=0} x^(E_{i=1..k} 10).
= (x + x^10 + x^(10^10) + ...)/(1x).


EXAMPLE

a(n) = 1, 2, 3, 4 for n = 1, 10, 10^10, 10^(10^10), i.e., n = 1, 10, 10000000000, 10^10000000000.
a(n) = 2 for all n >= 10, n < 10^10.


MATHEMATICA

a[n_] := Length[NestWhileList[Log10, n, # >= 1 &]]  1; Array[a, 100] (* Amiram Eldar, Dec 08 2018 *)


PROG

(PARI) a(n, i=1)={while(n=logint(n, 10), i++); i} \\ M. F. Hasler, Dec 07 2018


CROSSREFS

Cf. A001069, A010096, A211661, A211663, A211666, A211668, A211670.
Sequence in context: A065687 A300403 A077433 * A065685 A084100 A329683
Adjacent sequences: A211662 A211663 A211664 * A211666 A211667 A211668


KEYWORD

base,nonn


AUTHOR

Hieronymus Fischer, Apr 30 2012


EXTENSIONS

Name reworded by M. F. Hasler, Dec 12 2018


STATUS

approved



