This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A211665 Minimal number of iterations of log_10 applied to n until the result is < 1. 0
 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,10 COMMENTS Different from A055642 and A138902, cf. Example. Instead the real-valued log function one can consider only the integer part (i.e., A004216), since log_b(x) < k <=> x < b^k <=> floor(x) < b^k for any integer k >= 0; that's also why the first 2, 3, 4, ... appears exactly for 10, 10^10, 10^(10^10) etc. - M. F. Hasler, Dec 12 2018 LINKS FORMULA With the definition E_{i=1..n} c(i) := c(1)^(c(2)^(c(3)^(...(c(n-1)^(c(n))))...))); E_{i=1..0} := 1; example: E_{i=1..3} 10 = 10^(10^10) = 10^10000000000, we have:   a(E_{i=1..n} 10) = a(E_{i=1..n-1} 10) + 1, for n >= 1. G.f.: g(x) = 1/(1-x)*Sum_{k>=0} x^(E_{i=1..k} 10).   = (x + x^10 + x^(10^10) + ...)/(1-x). EXAMPLE a(n) = 1, 2, 3, 4 for n = 1, 10, 10^10, 10^(10^10), i.e., n = 1, 10, 10000000000, 10^10000000000. a(n) = 2 for all n >= 10, n < 10^10. MATHEMATICA a[n_] := Length[NestWhileList[Log10, n, # >= 1 &]] - 1; Array[a, 100] (* Amiram Eldar, Dec 08 2018 *) PROG (PARI) a(n, i=1)={while(n=logint(n, 10), i++); i} \\ M. F. Hasler, Dec 07 2018 CROSSREFS Cf. A001069, A010096, A211661, A211663, A211666, A211668, A211670. Sequence in context: A065687 A300403 A077433 * A065685 A084100 A329683 Adjacent sequences:  A211662 A211663 A211664 * A211666 A211667 A211668 KEYWORD base,nonn AUTHOR Hieronymus Fischer, Apr 30 2012 EXTENSIONS Name reworded by M. F. Hasler, Dec 12 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 11 12:33 EST 2019. Contains 329916 sequences. (Running on oeis4.)