login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A211666 Number of iterations log_10(log_10(log_10(...(n)...))) such that the result is < 2. 10
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1

COMMENTS

Different from A004216, A057427 and A185114.

For a general definition like "Number of iterations log_p(log_p(log_p(...(n)...))) such that the result is < q", where p > 1, q > 0, the resulting g.f. is

g(x) = 1/(1-x)*sum_{k=1..infinity} x^(E_{i=1..k} b(i,k)), where b(i,k)=p for i<k and b(i,k)=q for i=k. The explicit first terms of the g.f. are

g(x) = (x^q+x^(p^q)+x^(p^p^q)+x^(p^p^p^q)+…)/(1-x).

LINKS

Table of n, a(n) for n=1..85.

FORMULA

With the exponentiation definition E_{i=1..n} c(i) := c(1)^(c(2)^(c(3)^(...(c(n-1)^(c(n))))...))); E_{i=1..0} c := 1; example: E_{i=1..3} 10 = 10^(10^10) = 10^10000000000, we get:

a(E_{i=1..n} 10) = a(E_{i=1..n-1} 10)+1, for n>=1.

G.f.: g(x)= 1/(1-x)*sum_{k=1..infinity} x^(E_{i=1..k} b(i,k)), where b(i,k)=10 for i<k and b(i,k)=2 for i=k.

The explicit first terms of the g.f. are

g(x)=(x^2+x^100+x^(10^100)+…)/(1-x).

EXAMPLE

a(n)=0, 1, 2, 3 for n=1, 2, 10^2, 10^10^2 =1, 2, 100, 10^100.

CROSSREFS

Cf. A001069, A010096, A211662, A211664, A211668, A211670.

Sequence in context: A165581 A165586 A134824 * A165476 A165596 A226523

Adjacent sequences:  A211663 A211664 A211665 * A211667 A211668 A211669

KEYWORD

base,nonn

AUTHOR

Hieronymus Fischer, Apr 30 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 19:31 EST 2019. Contains 329809 sequences. (Running on oeis4.)