

A211663


Number of iterations log(log(log(...(n)...))) such that the result is < 1, where log is the natural logarithm.


2



1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

For n<16 same as A211661.


LINKS

Table of n, a(n) for n=1..88.


FORMULA

With the exponentiation definition E_{i=1..n} c(i) := c(1)^(c(2)^(c(3)^(...(c(n1)^(c(n))))...))); E_{i=1..0} := 1; example: E_{i=1..4} 3 = 3^(3^(3^3)) = 3^(3^27), we get:
a(ceiling(E_{i=1..n} e)) = a(ceiling(E_{i=1..n1} e))+1, for n>=1.
G.f.: g(x)= 1/(1x)*sum_{k=0..infinity} x^(ceiling(E_{i=1..k} e)). The explicit first terms of the g.f. are
g(x)=(x+x^3+x^16+x^3814280+...)/(1x).


EXAMPLE

a(n)=1, 2, 3, 4, for n=1, ceiling(e), ceiling(e^e), ceiling(e^e^e), =1, 3, 16, 3814280.


CROSSREFS

Cf. A001069, A010096, A211662, A211664, A211666, A211668, A211669.
Sequence in context: A296078 A137325 A180258 * A000195 A135663 A090620
Adjacent sequences: A211660 A211661 A211662 * A211664 A211665 A211666


KEYWORD

base,nonn


AUTHOR

Hieronymus Fischer, Apr 30 2012


STATUS

approved



