login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000195 a(n) = floor(log(n)). 19
0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,8

COMMENTS

Equals A004233(n) - 1 for n > 1.

Does not satisfy Benford's law [Whyman et al., 2016] - N. J. A. Sloane, Feb 12 2017

LINKS

T. D. Noe, Table of n, a(n) for n=1..10000

G. Whyman, N. Ohtori, E. Shulzinger, Ed. Bormashenko, Revisiting the Benford law: When the Benford-like distribution of leading digits in sets of numerical data is expectable?, Physica A: Statistical Mechanics and its Applications, 461, 595-601 (2016).

Index entries for sequences related to Benford's law

MAPLE

Digits := 100; f := n->floor(evalf(log(n))); [ seq(f(n), n=1..100) ];

MATHEMATICA

Floor@ Log@ Range@ 105 (* Michael De Vlieger, Aug 21 2017 *)

PROG

(PARI) a(n)=floor(log(n))

(Haskell)

a000195 = floor . log . fromIntegral  -- Reinhard Zumkeller, Mar 17 2015

CROSSREFS

Cf. A000193 (nearest integer to log(n)), A004233.

Cf. A000523.

Sequence in context: A137325 A180258 A211663 * A135663 A090620 A151659

Adjacent sequences:  A000192 A000193 A000194 * A000196 A000197 A000198

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 12 16:06 EST 2018. Contains 318077 sequences. (Running on oeis4.)