1,8
Equals A004233(n) - 1 for n > 1.
Does not satisfy Benford's law [Whyman et al., 2016] - N. J. A. Sloane, Feb 12 2017
T. D. Noe, Table of n, a(n) for n=1..10000
G. Whyman, N. Ohtori, E. Shulzinger, Ed. Bormashenko, Revisiting the Benford law: When the Benford-like distribution of leading digits in sets of numerical data is expectable?, Physica A: Statistical Mechanics and its Applications, 461, 595-601 (2016).
Index entries for sequences related to Benford's law
Digits := 100; f := n->floor(evalf(log(n))); [ seq(f(n), n=1..100) ];
Floor@ Log@ Range@ 105 (* Michael De Vlieger, Aug 21 2017 *)
(PARI) a(n)=floor(log(n))
(Haskell)
a000195 = floor . log . fromIntegral -- Reinhard Zumkeller, Mar 17 2015
Cf. A000193 (nearest integer to log(n)), A004233.
Cf. A000523.
Sequence in context: A137325 A180258 A211663 * A135663 A090620 A151659
Adjacent sequences: A000192 A000193 A000194 * A000196 A000197 A000198
nonn,easy
N. J. A. Sloane
approved