OFFSET
1,3
REFERENCES
J. W. Moon, Topics on Tournaments. Holt, NY, 1968, p. 81.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Joseph Myers, Table of n, a(n) for n = 1..1000
B. Alspach, A combinatorial proof of a conjecture of Goldberg and Moon, Canad. Math. Bull. 11 (1968), 655-661.
B. Alspach, On point-symmetric tournaments, Canad. Math. Bull., 13 (1970), 317-323. [Annotated copy] See g(n) as defined on page 317 (NOT on page 322).
B. Alspach and J. L. Berggren, On the determination of the maximum order of the group of a tournament, Canad. Math. Bull 16 (1973), 11-14.
J. D. Dixon, The maximum order of the group of a tournament, Canad. Math. Bull. 10 (1967), 503-505.
FORMULA
a(3^k) = 3^((3^k - 1)/2), a(5*3^k) = 5*3^((5*3^k - 5)/2), a(7*3^k) = 7*3^((7*3^k - 5)/2), and, for all other n, a(n) = max(a(i)a(n-i)) where the maximum is taken over 1 <= i <= n-1 (from Alspach and Berggren (1973) Theorem 4).
a(3r) = (3^r)a(r), a(n) = a(n-1) for n = 1, 2 or 4 mod 9, a(9k+8) = max(a(9k+7), a(5)a(9k+3)), a(9k+5) = max(a(2)a(9k+3), a(5)a(9k), a(7)a(9k-2)), a(9k+7) = a(7)a(9k) (from Alspach and Berggren (1973) Theorem 5).
MAPLE
a:= proc(n) local t, r; t:= irem(n, 9);
`if`(3^ilog[3](n)=n, 3^((3^ilog[3](n)-1)/2),
`if`(irem(n, 5, 'r')=0 and 3^ilog[3](r)=r, 5*3^((5*3^ilog[3](r)-5)/2),
`if`(irem(n, 7, 'r')=0 and 3^ilog[3](r)=r, 7*3^((7*3^ilog[3](r)-5)/2),
`if`(irem(n, 3, 'r')=0, 3^r*a(r),
`if`(t in {1, 2, 4}, a(n-1),
`if`(t = 8, max(a(n-1), a(5)*a(n-5)),
`if`(t = 5, max(a(2)*a(n-2), a(5)*a(n-5), a(7)*a(n-7)),
a(7)*a(n-7) )))))))
end:
seq(a(n), n=1..50); # Alois P. Heinz, Jun 29 2012
MATHEMATICA
a[n_] := a[n] = With[{t = Mod[n, 9]}, Which[ IntegerQ[Log[3, n]], 3^((1/2)*(n-1)), {q, r} = QuotientRemainder[n, 5]; r == 0 && IntegerQ[Log[3, q]], 5*3^((1/2)*(n-5)), {q, r} = QuotientRemainder[n, 7]; r == 0 && IntegerQ[Log[3, q]], 7*3^((1/2)*(n-5)), {q, r} = QuotientRemainder[n, 3]; r == 0, 3^q*a[q], MemberQ[{1, 2, 4}, t], a[n-1], t == 8, Max[a[n-1], a[5]*a[n-5]], t == 5, Max[a[2]*a[n-2], a[5]*a[n-5], a[7]*a[n-7]], True, a[7]*a[n-7]]]; Table[a[n], {n, 1, 38}] (* Jean-François Alcover, Nov 12 2012, after Alois P. Heinz *)
PROG
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
EXTENSIONS
Edited and extended by Joseph Myers, Jun 28 2012
STATUS
approved