OFFSET
1,2
COMMENTS
Let s=(1,3,5,7,9,...) and let T be the infinite square matrix whose n-th row is formed by putting n-1 zeros before the terms of s. Let T' be the transpose of T. Then A202674 represents the matrix product M=T'*T. M is the self-fusion matrix of s, as defined at A193722. See A202675 for characteristic polynomials of principal submatrices of M.
...
row 1 (1,3,5,7,...) A005408
diagonal (1,10,35,84,...) A000447
antidiagonal sums (1,6,20,50,...) A002415
EXAMPLE
Northwest corner:
1....3....5.....7.....9
3...10...18....26....34
5...18...35....53....71
7...26...53....84...116
9...34...71...116...165
MATHEMATICA
U = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[2 k - 1, {k, 1, 15}]];
L = Transpose[U]; M = L.U; TableForm[M]
m[i_, j_] := M[[i]][[j]];
Flatten[Table[m[i, n + 1 - i], {n, 1, 12}, {i, 1, n}]]
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Dec 22 2011
STATUS
approved