login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193722
Triangular array: the fusion of (x+1)^n and (x+2)^n; see Comments for the definition of fusion.
93
1, 1, 2, 1, 5, 6, 1, 8, 21, 18, 1, 11, 45, 81, 54, 1, 14, 78, 216, 297, 162, 1, 17, 120, 450, 945, 1053, 486, 1, 20, 171, 810, 2295, 3888, 3645, 1458, 1, 23, 231, 1323, 4725, 10773, 15309, 12393, 4374, 1, 26, 300, 2016, 8694, 24948, 47628, 58320, 41553, 13122
OFFSET
0,3
COMMENTS
Suppose that p = p(n)*x^n + p(n-1)*x^(n-1) + ... + p(1)*x + p(0) is a polynomial and that Q is a sequence of polynomials
...
q(k,x)=t(k,0)*x^k+t(k,1)*x^(k-1)+...+t(k,k-1)*x+t(k,k),
...
for k=0,1,2,... The Q-upstep of p is the polynomial given by
...
U(p) = p(n)*q(n+1,x) + p(n-1)*q(n,x) + ... + p(0)*q(1,x); note that q(0,x) does not appear.
...
Now suppose that P=(p(n,x)) and Q=(q(n,x)) are sequences of polynomials, where n indicates degree. The fusion of P by Q, denoted by P**Q, is introduced here as the sequence W=(w(n,x)) of polynomials defined by w(0,x)=1 and w(n+1,x)=U(p(n,x)).
...
Strictly speaking, ** is an operation on sequences of polynomials. However, if P and Q are regarded as numerical triangles (e.g., coefficients of polynomials), then ** can be regarded as an operation on numerical triangles. In this case, row (n+1) of P**Q, for n >= 0, is given by the matrix product P(n)*QQ(n), where P(n)=(p(n,n)...p(n,n-1)......p(n,1), p(n,0)) and QQ(n) is the (n+1)-by-(n+2) matrix given by
...
q(n+1,0) .. q(n+1,1)........... q(n+1,n) .... q(n+1,n+1)
0 ......... q(n,0)............. q(n,n-1) .... q(n,n)
0 ......... 0.................. q(n-1,n-2) .. q(n-1,n-1)
...
0 ......... 0.................. q(2,1) ...... q(2,2)
0 ......... 0 ................. q(1,0) ...... q(1,1);
here, the polynomial q(k,x) is taken to be
q(k,0)*x^k + q(k,1)x^(k-1) + ... + q(k,k)*x+q(k,k-1); i.e., "q" is used instead of "t".
...
If s=(s(1),s(2),s(3),...) is a sequence, then the infinite square matrix indicated by
s(1)...s(2)...s(3)...s(4)...s(5)...
..0....s(1)...s(2)...s(3)...s(4)...
..0......0....s(1)...s(2)...s(3)...
..0......0.......0...s(1)...s(2)...
is the self-fusion matrix of s; e.g., A202453, A202670.
...
Example: let p(n,x)=(x+1)^n and q(n,x)=(x+2)^n. Then
...
w(0,x) = 1 by definition of W
w(1,x) = U(p(0,x)) = U(1) = p(0,0)*q(1,x) = 1*(x+2) = x+2;
w(2,x) = U(p(1,x)) = U(x+1) = q(2,x) + q(1,x) = x^2+5x+6;
w(3,x) = U(p(2,x)) = U(x^2+2x+1) = q(3,x) + 2q(2,x) + q(1,x) = x^3+8x^2+21x+18;
...
From these first 4 polynomials in the sequence P**Q, we can write the first 4 rows of P**Q when P, Q, and P**Q are regarded as triangles:
1;
1, 2;
1, 5, 6;
1, 8, 21, 18;
...
Generally, if P and Q are the sequences given by p(n,x)=(ax+b)^n and q(n,x)=(cx+d)^n, then P**Q is given by (cx+d)(bcx+a+bd)^n.
...
In the following examples, r(P**Q) is the mirror of P**Q, obtained by reversing the rows of P**Q.
...
..P...........Q.........P**Q.......r(P**Q)
(x+1)^n.....(x+1)^n.....A081277....A118800 (unsigned)
(x+1)^n.....(x+2)^n.....A193722....A193723
(x+2)^n.....(x+1)^n.....A193724....A193725
(x+2)^n.....(x+2)^n.....A193726....A193727
(x+2)^n.....(2x+1)^n....A193728....A193729
(2x+1)^n....(x+1)^n.....A038763....A136158
(2x+1)^n....(2x+1)^n....A193730....A193731
(2x+1)^n,...(x+1)^n.....A193734....A193735
...
Continuing, let u denote the polynomial x^n+x^(n-1)+...+x+1, and let Fibo[n,x] denote the n-th Fibonacci polynomial.
...
P.............Q.........P**Q.......r(P**Q)
Fib[n+1,x]...(x+1)^n....A193736....A193737
u.............u.........A193738....A193739
u**u..........u**u......A193740....A193741
...
Regarding A193722:
col 1 ..... A000012
col 2 ..... A016789
col 3 ..... A081266
w(n,n) .... A025192
w(n,n-1) .. A081038
...
Associated with "upstep" as defined above is "downstep" defined at A193842 in connection with fission.
LINKS
Clark Kimberling, Fusion, Fission, and Factors, Fib. Q., 52 (2014), 195-202.
FORMULA
Triangle T(n,k), read by rows, given by [1,0,0,0,0,0,0,0,...] DELTA [2,1,0,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 04 2011
T(n,k) = 3*T(n-1,k-1) + T(n-1,k) with T(0,0)=T(1,0)=1 and T(1,1)=2. - Philippe Deléham, Oct 05 2011
T(n, k) = 3^(k-1)*( binomial(n-1,k) + 2*binomial(n,k) ). - G. C. Greubel, Feb 18 2020
EXAMPLE
First six rows:
1;
1, 2;
1, 5, 6;
1, 8, 21, 18;
1, 11, 45, 81, 54;
1, 14, 78, 216, 297, 162;
MAPLE
fusion := proc(p, q, n) local d, k;
p(n-1, 0)*q(n, x)+add(coeff(p(n-1, x), x^k)*q(n-k, x), k=1..n-1);
[1, seq(coeff(%, x, n-1-k), k=0..n-1)] end:
p := (n, x) -> (x + 1)^n; q := (n, x) -> (x + 2)^n;
A193722_row := n -> fusion(p, q, n);
for n from 0 to 5 do A193722_row(n) od; # Peter Luschny, Jul 24 2014
MATHEMATICA
(* First program *)
z = 9; a = 1; b = 1; c = 1; d = 2;
p[n_, x_] := (a*x + b)^n ; q[n_, x_] := (c*x + d)^n
t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
g[n_] := CoefficientList[w[n, x], {x}]
TableForm[Table[Reverse[g[n]], {n, -1, z}]]
Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193722 *)
TableForm[Table[g[n], {n, -1, z}]]
Flatten[Table[g[n], {n, -1, z}]] (* A193723 *)
(* Second program *)
Table[3^(k-1)*(Binomial[n-1, k] +2*Binomial[n, k]), {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 18 2020 *)
PROG
(Sage)
def fusion(p, q, n):
F = p(n-1, 0)*q(n, x)+add(expand(p(n-1, x)).coefficient(x, k)*q(n-k, x) for k in (1..n-1))
return [1]+[expand(F).coefficient(x, n-1-k) for k in (0..n-1)]
A193842_row = lambda k: fusion(lambda n, x: (x+1)^n, lambda n, x: (x+2)^n, k)
for n in range(7): A193842_row(n) # Peter Luschny, Jul 24 2014
(PARI) T(n, k) = 3^(k-1)*(binomial(n-1, k) +2*binomial(n, k)); \\ G. C. Greubel, Feb 18 2020
(Magma) [3^(k-1)*( Binomial(n-1, k) + 2*Binomial(n, k) ): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 18 2020
(GAP) Flat(List([0..10], n-> List([0..n], k-> 3^(k-1)*( Binomial(n-1, k) + 2*Binomial(n, k) ) ))); # G. C. Greubel, Feb 18 2020
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 04 2011
STATUS
approved