login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145324
Triangle read by rows: coefficients of 1; 1(X+2); 1(X+2)(X+3); 1(X+2)(X+3)(X+4); ....
11
1, 1, 2, 1, 5, 6, 1, 9, 26, 24, 1, 14, 71, 154, 120, 1, 20, 155, 580, 1044, 720, 1, 27, 295, 1665, 5104, 8028, 5040, 1, 35, 511, 4025, 18424, 48860, 69264, 40320, 1, 44, 826, 8624, 54649, 214676, 509004, 663696, 362880, 1, 54, 1266, 16884, 140889, 761166
OFFSET
1,3
COMMENTS
The last number of row n is n!.
Essentially the triangle given by [1, 0, 1, 0, 1, 0, 1, 0, 1, ...] DELTA [2, 1, 3, 2, 4, 3, 5, 4, 6, 5, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 09 2008
T(n+1,k+1) = a_k(2,3,...,n+1), n >= 0, k = 0..n, with the elementary symmetric function a_k(x[1],x[2],...,x[n]), with a_0(0):=1. E.g., a_2(2,3,4) = 2*3 + 2*4 + 3*4 = 26 = T(4,3). - Wolfdieter Lang, Oct 24 2011
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..11325 (rows 1 <= n <= 150, flattened)
Olivier Bodini, Antoine Genitrini, Mehdi Naima, Ranked Schröder Trees, arXiv:1808.08376 [cs.DS], 2018.
Olivier Bodini, Antoine Genitrini, Cécile Mailler, Mehdi Naima, Strict monotonic trees arising from evolutionary processes: combinatorial and probabilistic study, hal-02865198 [math.CO] / [math.PR] / [cs.DS] / [cs.DM], 2020.
Robert E. Moritz, On the sum of products of n consecutive integers, Univ. Washington Publications in Math., 1 (No. 3, 1926), 44-49 [Annotated scanned copy]
FORMULA
T(n,k) = A143491(n+1,n+2-k). - R. J. Mathar, Oct 10 2008
T(n,k) = Sum_{m=0..k-1} (-1)^m*|s(n+1, n+2-k+m)|, n >= 1, k = 1..n, with the Stirling numbers of the first kind s(n,k) = A048994(n,k). - Wolfdieter Lang, Oct 24 2011
T(n,k) = T(n-1,k)+n*T(n-1,k-1). - Mikhail Kurkov, Jun 26 2018
EXAMPLE
From Wolfdieter Lang, Oct 24 2011: (Start)
n\k 1 2 3 4 5 6 7 ...
1: 1
2: 1 2
3: 1 5 6
4: 1 9 26 24
5: 1 14 71 154 120
6: 1 20 155 580 1044 720
7: 1 27 295 1665 5104 8028 5040
...
T(4,3)= 26 = |s(5,3)| - |s(5,4)| + |s(5,5)| = 35 - 10 + 1.
(End)
MAPLE
A145324 := proc(n, k) coeftayl( 1*mul(x+i, i=2..n), x=0, n-k) ; end: for n from 1 to 11 do for k from 1 to n do printf("%d, ", A145324(n, k)) ; od: od: # R. J. Mathar, Oct 10 2008
MATHEMATICA
Table[Reverse[CoefficientList[Product[x+j, {j, 2, k}], x]], {k, 1, 15}] // Flatten (* Robert A. Russell, Sep 29 2018 *)
CROSSREFS
Sequence in context: A193722 A193635 A241168 * A260613 A375044 A375042
KEYWORD
nonn,tabl
AUTHOR
Jose Ramon Real, Oct 07 2008
EXTENSIONS
More terms from R. J. Mathar, Oct 10 2008
STATUS
approved