login
A048994
Triangle of Stirling numbers of first kind, s(n,k), n >= 0, 0 <= k <= n.
214
1, 0, 1, 0, -1, 1, 0, 2, -3, 1, 0, -6, 11, -6, 1, 0, 24, -50, 35, -10, 1, 0, -120, 274, -225, 85, -15, 1, 0, 720, -1764, 1624, -735, 175, -21, 1, 0, -5040, 13068, -13132, 6769, -1960, 322, -28, 1, 0, 40320, -109584, 118124, -67284, 22449, -4536, 546, -36, 1, 0, -362880, 1026576, -1172700, 723680, -269325, 63273, -9450, 870, -45, 1
OFFSET
0,8
COMMENTS
The unsigned numbers are also called Stirling cycle numbers: |s(n,k)| = number of permutations of n objects with exactly k cycles.
Mirror image of the triangle A054654. - Philippe Deléham, Dec 30 2006
Also the triangle gives coefficients T(n,k) of x^k in the expansion of C(x,n) = (a(k)*x^k)/n!. - Mokhtar Mohamed, Dec 04 2012
From Wolfdieter Lang, Nov 14 2018: (Start)
This is the Sheffer triangle of Jabotinsky type (1, log(1 + x)). See the e.g.f. of the triangle below.
This is the inverse Sheffer triangle of the Stirling2 Sheffer triangle A008275.
The a-sequence of this Sheffer triangle (see a W. Lang link in A006232)
is from the e.g.f. A(x) = x/(exp(x) -1) a(n) = Bernoulli(n) = A027641(n)/A027642(n), for n >= 0. The z-sequence vanishes.
The Boas-Buck sequence for the recurrences of columns has o.g.f. B(x) = Sum_{n>=0} b(n)*x^n = 1/((1 + x)*log(1 + x)) - 1/x. b(n) = (-1)^(n+1)*A002208(n+1)/A002209(n+1), b = {-1/2, 5/12, -3/8, 251/720, -95/288, 19087/60480,...}. For the Boas-Buck recurrence of Riordan and Sheffer triangles see the Aug 10 2017 remark in A046521, adapted to the Sheffer case, also for two references. See the recurrence and example below. - Wolfdieter Lang, Nov 14 2018
Let G(n,m,k) be the number of simple labeled graphs on [n] with m edges and k components. Then T(n,k) = Sum (-1)^m*G(n,m,k). See the Read link below. Equivalently, T(n,k) = Sum mu(0,p) where the sum is over all set partitions p of [n] containing k blocks and mu is the Moebius function in the incidence algebra associated to the set partition lattice on [n]. - Geoffrey Critzer, May 11 2024
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 833.
L. Comtet, Advanced Combinatorics, Reidel, 1974; Chapter V, also p. 310.
J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 93.
F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 226.
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 245.
J. Riordan, An Introduction to Combinatorial Analysis, p. 48.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Paul Barry, Generalized Stirling Numbers, Exponential Riordan Arrays, and Toda Chain Equations, Journal of Integer Sequences, 17 (2014), #14.2.3.
Fatima Zohra Bensaci, Rachid Boumahdi, and Laala Khaldi, Finite Sums Involving Fibonacci and Lucas Numbers, J. Int. Seq. (2024). See p. 9.
R. M. Dickau, Stirling numbers of the first kind. [Illustrates the unsigned Stirling cycle numbers A132393.]
Askar Dzhumadil'daev and Damir Yeliussizov, Walks, partitions, and normal ordering, Electronic Journal of Combinatorics, 22(4) (2015), #P4.10.
Gergő Nemes, An Asymptotic Expansion for the Bernoulli Numbers of the Second Kind, J. Int. Seq. 14 (2011), #11.4.8.
A. Hennessy and Paul Barry, Generalized Stirling Numbers, Exponential Riordan Arrays, and Orthogonal Polynomials, J. Int. Seq. 14 (2011), #11.8.2 (A-number typo A048894).
NIST Digital Library of Mathematical Functions, Stirling Numbers
Ken Ono, Larry Rolen, and Florian Sprung, Zeta-Polynomials for modular form periods, p. 6, arXiv:1602.00752 [math.NT], 2016.
Ricardo A. Podestá, New identities for binary Krawtchouk polynomials, binomial coefficients and Catalan numbers, arXiv preprint arXiv:1603.09156 [math.CO], 2016.
Ronald Read, An Introduction to Chromatic Polynomials, Journal of Combinatorial Theory, 4(1968)52-71.
FORMULA
s(n, k) = A008275(n,k) for n >= 1, k = 1..n; column k = 0 is {1, repeat(0)}.
s(n, k) = s(n-1, k-1) - (n-1)*s(n-1, k), n, k >= 1; s(n, 0) = s(0, k) = 0; s(0, 0) = 1.
The unsigned numbers a(n, k)=|s(n, k)| satisfy a(n, k)=a(n-1, k-1)+(n-1)*a(n-1, k), n, k >= 1; a(n, 0) = a(0, k) = 0; a(0, 0) = 1.
Triangle (signed) = [0, -1, -1, -2, -2, -3, -3, -4, -4, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, ...]; Triangle(unsigned) = [0, 1, 1, 2, 2, 3, 3, 4, 4, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, ...]; where DELTA is Deléham's operator defined in A084938.
Sum_{k=0..n} (-m)^(n-k)*s(n, k) = A000142(n), A001147(n), A007559(n), A007696(n), ... for m = 1, 2, 3, 4, ... .- Philippe Deléham, Oct 29 2005
A008275*A007318 as infinite lower triangular matrices. - Gerald McGarvey, Aug 20 2009
T(n,k) = n!*[x^k]([t^n]exp(x*log(1+t))). - Peter Luschny, Dec 30 2010, updated Jun 07 2020
From Wolfdieter Lang, Nov 14 2018: (Start)
Recurrence from the Sheffer a-sequence (see a comment above): s(n, k) = (n/k)*Sum_{j=0..n-k} binomial(k-1+j, j)*Bernoulli(j)*s(n-1, k-1+j), for n >= 1 and k >= 1, with s(n, 0) = 0 if n >= 1, and s(0,0) = 1.
Boas-Buck type recurrence for column k: s(n, k) = (n!*k/(n - k))*Sum_{j=k..n-1} b(n-1-j)*s(j, k)/j!, for n >= 1 and k = 0..n-1, with input s(n, n) = 1. For sequence b see the Boas-Buck comment above. (End)
T(n,k) = Sum_{j=k..n} (-1)^(n-j)*A271705(n,j)*A216294(j,k). - Mélika Tebni, Feb 23 2023
EXAMPLE
Triangle begins:
n\k 0 1 2 3 4 5 6 7 8 9 ...
0 1
1 0 1
2 0 -1 1
3 0 2 -3 1
4 0 -6 11 -6 1
5 0 24 -50 35 -10 1
6 0 -120 274 -225 85 -15 1
7 0 720 -1764 1624 -735 175 -21 1
8 0 -5040 13068 -13132 6769 -1960 322 -28 1
9 0 40320 -109584 118124 -67284 22449 -4536 546 -36 1
... - Wolfdieter Lang, Aug 22 2012
------------------------------------------------------------------
From Wolfdieter Lang, Nov 14 2018: (Start)
Recurrence: s(5,2)= s(4, 1) - 4*s(4, 2) = -6 - 4*11 = -50.
Recurrence from the a- and z-sequences: s(6, 3) = 2*(1*1*(-50) + 3*(-1/2)*35 + 6*(1/6)*(-10) + 10*0*1) = -225.
Boas-Buck recurrence for column k = 3, with b = {-1/2, 5/12, -3/8, ...}:
s(6, 3) = 6!*((-3/8)*1/3! + (5/12)*(-6)/4! + (-1/2)*35/5!) = -225. (End)
MAPLE
A048994:= proc(n, k) combinat[stirling1](n, k) end: # R. J. Mathar, Feb 23 2009
seq(print(seq(coeff(expand(k!*binomial(x, k)), x, i), i=0..k)), k=0..9); # Peter Luschny, Jul 13 2009
A048994_row := proc(n) local k; seq(coeff(expand(pochhammer(x-n+1, n)), x, k), k=0..n) end: # Peter Luschny, Dec 30 2010
MATHEMATICA
Table[StirlingS1[n, m], {n, 0, 9}, {m, 0, n}] (* Peter Luschny, Dec 30 2010 *)
PROG
(PARI) a(n, k) = if(k<0 || k>n, 0, if(n==0, 1, (n-1)*a(n-1, k)+a(n-1, k-1)))
(PARI) trg(nn)=for (n=0, nn-1, for (k=0, n, print1(stirling(n, k, 1), ", "); ); print(); ); \\ Michel Marcus, Jan 19 2015
(Maxima) create_list(stirling1(n, k), n, 0, 12, k, 0, n); /* Emanuele Munarini, Mar 11 2011 */
(Haskell)
a048994 n k = a048994_tabl !! n !! k
a048994_row n = a048994_tabl !! n
a048994_tabl = map fst $ iterate (\(row, i) ->
(zipWith (-) ([0] ++ row) $ map (* i) (row ++ [0]), i + 1)) ([1], 0)
-- Reinhard Zumkeller, Mar 18 2013
CROSSREFS
See especially A008275 which is the main entry for this triangle. A132393 is an unsigned version, and A008276 is another version.
A000142(n) = Sum_{k=0..n} |s(n, k)| for n >= 0.
Row sums give A019590(n+1).
Sequence in context: A264430 A264433 A132393 * A344172 A121434 A296455
KEYWORD
sign,tabl,nice
EXTENSIONS
Offset corrected by R. J. Mathar, Feb 23 2009
Formula corrected by Philippe Deléham, Sep 10 2009
STATUS
approved