login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A121434
Matrix inverse of triangle A098568, where A098568(n, k) = C( (k+1)*(k+2)/2 + n-k-1, n-k) for n>=k>=0.
3
1, 0, 1, 0, -1, 1, 0, 2, -3, 1, 0, -7, 12, -6, 1, 0, 37, -67, 39, -10, 1, 0, -268, 498, -311, 95, -15, 1, 0, 2496, -4701, 3045, -1015, 195, -21, 1, 0, -28612, 54298, -35901, 12560, -2675, 357, -28, 1, 0, 391189, -745734, 499157, -179717, 40635, -6097, 602, -36, 1, 0, -6230646, 11911221, -8034267, 2945010
OFFSET
0,8
FORMULA
(1) T(n,k) = (-1)^(n-k)*[A107876^(k*(k+1)/2)](n,k); i.e., column k equals signed column k of A107876^(k*(k+1)/2). G.f.s for column k: (2) 1 = Sum_{j>=0} T(j+k,k)*x^j/(1-x)^( j*(j+1)/2) + j*k + k*(k+1)/2); (3) 1 = Sum_{j>=0} T(j+k,k)*x^j*(1+x)^( j*(j-1)/2) + j*k + k*(k+1)/2).
EXAMPLE
Triangle begins:
1;
0, 1;
0, -1, 1;
0, 2, -3, 1;
0, -7, 12, -6, 1;
0, 37, -67, 39, -10, 1;
0, -268, 498, -311, 95, -15, 1;
0, 2496, -4701, 3045, -1015, 195, -21, 1;
0, -28612, 54298, -35901, 12560, -2675, 357, -28, 1;
0, 391189, -745734, 499157, -179717, 40635, -6097, 602, -36, 1; ...
PROG
(PARI) /* Matrix Inverse of A098568 */ T(n, k)=local(M=matrix(n+1, n+1, r, c, if(r>=c, binomial((c-1)*(c-2)/2+r-2, r-c)))); return((M^-1)[n+1, k+1])
(PARI) /* Obtain by G.F. */ T(n, k)=polcoeff(1-sum(j=0, n-k-1, T(j+k, k)*x^j/(1-x+x*O(x^n))^(j*(j+1)/2+j*k+k*(k+1)/2)), n-k)
CROSSREFS
Cf. A098568, A107876; unsigned columns: A107877, A107887.
Sequence in context: A132393 A048994 A344172 * A296455 A137329 A265604
KEYWORD
sign,tabl
AUTHOR
Paul D. Hanna, Aug 27 2006
STATUS
approved