login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A121431
Number of subpartitions of partition P=[0,0,1,1,1,2,2,2,2,3,3,3,3,3,4,...] (A052146).
5
1, 1, 1, 2, 3, 4, 9, 15, 22, 30, 69, 118, 178, 250, 335, 769, 1317, 1995, 2820, 3810, 4984, 11346, 19311, 29126, 41061, 55410, 72492, 92652, 208914, 352636, 528097, 740035, 993678, 1294776, 1649634, 2065146, 4613976, 7722840, 11476963, 15971180
OFFSET
0,4
COMMENTS
See A115728 for the definition of subpartitions of a partition.
FORMULA
G.f.: 1/(1-x) = Sum_{n>=0} a(n)*x^n*(1-x)^A052146(n).
EXAMPLE
The g.f. may be illustrated by:
1/(1-x) = (1 + 1*x)*(1-x)^0 + (x^2 + 2*x^3 + 3*x^4)*(1-x)^1 +
(4*x^5 + 9*x^6 + 15*x^7 + 22*x^8)*(1-x)^2 +
(30*x^9 + 69*x^10 + 118*x^11 + 178*x^12 + 250*x^13)*(1-x)^3 +
(335*x^14 + 769*x^15 + 1317*x^16 + 1995*x^17 + 2820*x^18 + 3810*x^19)*(1-x)^4 +...
When the sequence is put in the form of a triangle:
1, 1,
1, 2, 3,
4, 9, 15, 22,
30, 69, 118, 178, 250,
335, 769, 1317, 1995, 2820, 3810,
4984, 11346, 19311, 29126, 41061, 55410, 72492,
92652, 208914, 352636, 528097, 740035, 993678, 1294776, ...
then the columns of this triangle form column 1 (with offset)
of successive matrix powers of triangle H=A121412.
This sequence is embedded in table A121426 as follows.
Column 1 of successive powers of matrix H begin:
H^1: [1,1,4,30,335,4984,92652,2065146,53636520,...];
H^2: [1,2,9,69,769,11346,208914,4613976,118840164,...];
H^3: 1, [3,15,118,1317,19311,352636,7722840,197354133,...];
H^4: 1,4, [22,178,1995,29126,528097,11476963,291124693,...];
H^5: 1,5,30, [250,2820,41061,740035,15971180,402319275,...];
H^6: 1,6,39,335, [3810,55410,993678,21310710,533345745,...];
H^7: 1,7,49,434,4984, [72492,1294776,27611970,686872893,...];
H^8: 1,8,60,548,6362,92652, [1649634,35003430,865852191,...];
H^9: 1,9,72,678,7965,116262,2065146, [43626510,1073540871,...];
the terms enclosed in brackets form this sequence.
PROG
(PARI) {a(n)=local(A); if(n==0, 1, A=x+x*O(x^n); for(k=0, n, A+=polcoeff(A, k)*x^k*(1-(1-x)^( (sqrtint(8*k+9)+1)\2 - 1 ) )); polcoeff(A, n))}
CROSSREFS
Cf. A121412 (triangle H), A121416 (H^2), A121420 (H^3); A121426, A121427; column 1 of H^n: A121414, A121418, A121422; variants: A121430, A121432, A121433.
Sequence in context: A032982 A288856 A033076 * A084080 A124753 A248647
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 30 2006
STATUS
approved