The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A121412 Triangular matrix T, read by rows, where row n of T equals row (n-1) of T^(n+1) with an appended '1'. 30
1, 1, 1, 3, 1, 1, 18, 4, 1, 1, 170, 30, 5, 1, 1, 2220, 335, 45, 6, 1, 1, 37149, 4984, 581, 63, 7, 1, 1, 758814, 92652, 9730, 924, 84, 8, 1, 1, 18301950, 2065146, 199692, 17226, 1380, 108, 9, 1, 1, 508907970, 53636520, 4843125, 387567, 28365, 1965, 135, 10, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
Related to the number of subpartitions of a partition as defined in A115728; for examples involving column k of successive matrix powers, see A121430, A121431, A121432 and A121433. Essentially the same as triangle A101479, but this form best illustrates the nice properties of this triangle.
LINKS
FORMULA
G.f.: Column k of successive powers of T satisfy the amazing relation given by: 1 = Sum_{n>=0} (1-x)^(n+1) * x^(n(n+1)/2 + k*n) * Sum_{j=0..n+k} [T^(j+1)](n+k,k) * x^j.
EXAMPLE
Triangle T begins:
1;
1, 1;
3, 1, 1;
18, 4, 1, 1;
170, 30, 5, 1, 1;
2220, 335, 45, 6, 1, 1;
37149, 4984, 581, 63, 7, 1, 1;
758814, 92652, 9730, 924, 84, 8, 1, 1;
18301950, 2065146, 199692, 17226, 1380, 108, 9, 1, 1;
508907970, 53636520, 4843125, 387567, 28365, 1965, 135, 10, 1, 1;
To get row 4 of T, append '1' to row 3 of matrix power T^5:
1;
5, 1;
25, 5, 1;
170, 30, 5, 1; ...
To get row 5 of T, append '1' to row 4 of matrix power T^6:
1;
6, 1;
33, 6, 1;
233, 39, 6, 1;
2220, 335, 45, 6, 1; ...
Likewise, get row n of T by appending '1' to row (n-1) of T^(n+1).
MATHEMATICA
T[n_, k_] := Module[{A = {{1}}, B}, Do[B = Array[0&, {m, m}]; Do[Do[B[[i, j]] = If[j == i, 1, MatrixPower[A, i][[i-1, j]]], {j, 1, i}], {i, 1, m}]; A = B, {m, 1, n+1}]; A[[n+1, k+1]]];
Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 03 2019 *)
PROG
(PARI) {T(n, k) = my(A=Mat(1), B); for(m=1, n+1, B=matrix(m, m); for(i=1, m, for(j=1, i, if(j==i, B[i, j]=1, B[i, j]=(A^i)[i-1, j]); )); A=B); return((A^1)[n+1, k+1])}
for(n=0, 12, for(k=0, n, print1( T(n, k), ", ")); print(""))
CROSSREFS
Cf. A121416 (T^2), A121420 (T^3), columns: A121413, A121414, A121415; related tables: A121424, A121426, A121428; related subpartitions: A121430, A121431, A121432, A121433.
Sequence in context: A333560 A176293 A176339 * A212855 A016561 A111382
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Jul 30 2006
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 29 07:06 EDT 2024. Contains 372926 sequences. (Running on oeis4.)