login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A121412
Triangular matrix T, read by rows, where row n of T equals row (n-1) of T^(n+1) with an appended '1'.
30
1, 1, 1, 3, 1, 1, 18, 4, 1, 1, 170, 30, 5, 1, 1, 2220, 335, 45, 6, 1, 1, 37149, 4984, 581, 63, 7, 1, 1, 758814, 92652, 9730, 924, 84, 8, 1, 1, 18301950, 2065146, 199692, 17226, 1380, 108, 9, 1, 1, 508907970, 53636520, 4843125, 387567, 28365, 1965, 135, 10, 1, 1
OFFSET
0,4
COMMENTS
Related to the number of subpartitions of a partition as defined in A115728; for examples involving column k of successive matrix powers, see A121430, A121431, A121432 and A121433. Essentially the same as triangle A101479, but this form best illustrates the nice properties of this triangle.
LINKS
FORMULA
G.f.: Column k of successive powers of T satisfy the amazing relation given by: 1 = Sum_{n>=0} (1-x)^(n+1) * x^(n(n+1)/2 + k*n) * Sum_{j=0..n+k} [T^(j+1)](n+k,k) * x^j.
EXAMPLE
Triangle T begins:
1;
1, 1;
3, 1, 1;
18, 4, 1, 1;
170, 30, 5, 1, 1;
2220, 335, 45, 6, 1, 1;
37149, 4984, 581, 63, 7, 1, 1;
758814, 92652, 9730, 924, 84, 8, 1, 1;
18301950, 2065146, 199692, 17226, 1380, 108, 9, 1, 1;
508907970, 53636520, 4843125, 387567, 28365, 1965, 135, 10, 1, 1;
To get row 4 of T, append '1' to row 3 of matrix power T^5:
1;
5, 1;
25, 5, 1;
170, 30, 5, 1; ...
To get row 5 of T, append '1' to row 4 of matrix power T^6:
1;
6, 1;
33, 6, 1;
233, 39, 6, 1;
2220, 335, 45, 6, 1; ...
Likewise, get row n of T by appending '1' to row (n-1) of T^(n+1).
MATHEMATICA
T[n_, k_] := Module[{A = {{1}}, B}, Do[B = Array[0&, {m, m}]; Do[Do[B[[i, j]] = If[j == i, 1, MatrixPower[A, i][[i-1, j]]], {j, 1, i}], {i, 1, m}]; A = B, {m, 1, n+1}]; A[[n+1, k+1]]];
Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 03 2019 *)
PROG
(PARI) {T(n, k) = my(A=Mat(1), B); for(m=1, n+1, B=matrix(m, m); for(i=1, m, for(j=1, i, if(j==i, B[i, j]=1, B[i, j]=(A^i)[i-1, j]); )); A=B); return((A^1)[n+1, k+1])}
for(n=0, 12, for(k=0, n, print1( T(n, k), ", ")); print(""))
CROSSREFS
Cf. A121416 (T^2), A121420 (T^3), columns: A121413, A121414, A121415; related tables: A121424, A121426, A121428; related subpartitions: A121430, A121431, A121432, A121433.
Sequence in context: A333560 A176293 A176339 * A212855 A016561 A111382
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Jul 30 2006
STATUS
approved