The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A176339 Triangle T(n,k) = 1 - A176337(k) - A176337(n-k) + A176337(n) read by rows. 5
 1, 1, 1, 1, -3, 1, 1, 17, 17, 1, 1, -239, -219, -239, 1, 1, 7169, 6933, 6933, 7169, 1, 1, -444479, -437307, -437563, -437307, -444479, 1, 1, 56004353, 55559877, 55567029, 55567029, 55559877, 56004353, 1, 1, -14225105663, -14169101307, -14169545803, -14169538395, -14169545803, -14169101307, -14225105663, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Row sums are {1, 2, -1, 36, -695, 28206, -2201133, 334262520, -99297043939, 57953303599938, -66678973493759897, ...}. LINKS G. C. Greubel, Rows n = 0..25 of triangle, flattened FORMULA T(n,k) = T(n,n-k). EXAMPLE Triangle begins as: 1; 1, 1; 1, -3, 1; 1, 17, 17, 1; 1, -239, -219, -239, 1; 1, 7169, 6933, 6933, 7169, 1; 1, -444479, -437307, -437563, -437307, -444479, 1; MAPLE A176339 := proc(n, m) 1-A176337(m)-A176337(n-m)+A176337(n) ; end proc: # R. J. Mathar, May 04 2013 MATHEMATICA b[n_, q_]:= b[n, q]= If[n==0, 0, (1-q^n)*b[n-1, q] +1]; T[n_, k_, q_]:= 1 + b[n, q] -b[n-k, q] - b[k, q]; Table[T[n, k, 2], {n, 0, 10}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Dec 07 2019 *) PROG (PARI) b(n, q) = if(n==0, 0, 1 + (1-q^n)*b(n-1, q) ); T(n, k, q) = 1 + b(n, q) - b(n-k, q) - b(k, q); for(n=0, 10, for(k=0, n, print1(T(n, k, 2), ", "))) \\ G. C. Greubel, Dec 07 2019 (Magma) function b(n, q) if n eq 0 then return 0; else return 1 - (q^n-1)*b(n-1, q); end if; return b; end function; function T(n, k, q) return 1 + b(n, q) - b(n-k, q) - b(k, q); end function; [ T(n, k, 2) : k in [0..n], n in [0..10]]; // G. C. Greubel, Dec 07 2019 (Sage) @CachedFunction def b(n, q): if (n==0): return 0 else: return 1 - (q^n-1)*b(n-1, q) def T(n, k, q): return 1 + b(n, q) - b(n-k, q) - b(k, q) [[T(n, k, 2) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Dec 07 2019 (GAP) b:= function(n, q) if n=0 then return 0; else return 1 - (q^n-1)*b(n-1, q); fi; end; T:= function(n, k, q) return 1 + b(n, q) - b(n-k, q) - b(k, q); end; Flat(List([0..10], n-> List([0..n], k-> T(n, k, 2) ))); # G. C. Greubel, Dec 07 2019 CROSSREFS Cf. A176337, A176338, A176340. Sequence in context: A322790 A333560 A176293 * A121412 A212855 A016561 Adjacent sequences: A176336 A176337 A176338 * A176340 A176341 A176342 KEYWORD sign,tabl AUTHOR Roger L. Bagula, Apr 15 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 23 22:09 EDT 2024. Contains 373661 sequences. (Running on oeis4.)