login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176293
Triangle T(n,k) = 1 + 2*k*(n-k)*(n-1)^2, read by rows.
1
1, 1, 1, 1, 3, 1, 1, 17, 17, 1, 1, 55, 73, 55, 1, 1, 129, 193, 193, 129, 1, 1, 251, 401, 451, 401, 251, 1, 1, 433, 721, 865, 865, 721, 433, 1, 1, 687, 1177, 1471, 1569, 1471, 1177, 687, 1, 1, 1025, 1793, 2305, 2561, 2561, 2305, 1793, 1025, 1, 1, 1459, 2593, 3403, 3889, 4051, 3889, 3403, 2593, 1459, 1
OFFSET
0,5
COMMENTS
Row sums are {1, 2, 5, 36, 185, 646, 1757, 4040, 8241, 15370, 26741, ...} = (n+1)*(n^4 - 3*n^3 + 3*n^2 - n + 3)/3.
FORMULA
T(n,k) = T(n,n-k) = 1 - (-n^2 - n^4 + (n*k + n - k)^2 + (k + n*(n - k))^2).
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 3, 1;
1, 17, 17, 1;
1, 55, 73, 55, 1;
1, 129, 193, 193, 129, 1;
1, 251, 401, 451, 401, 251, 1;
1, 433, 721, 865, 865, 721, 433, 1;
1, 687, 1177, 1471, 1569, 1471, 1177, 687, 1;
1, 1025, 1793, 2305, 2561, 2561, 2305, 1793, 1025, 1;
1, 1459, 2593, 3403, 3889, 4051, 3889, 3403, 2593, 1459, 1;
MAPLE
seq(seq(1 + 2*k*(n-k)*(n-1)^2, k=0..n), n=0..12); # G. C. Greubel, Nov 25 2019
MATHEMATICA
T[n_, k_]:= 1 -(-n^2 -n^4 +(n*k+n-k)^2 +(k +n(n-k))^2); Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten
PROG
(PARI) T(n, k) = 1 + 2*k*(n-k)*(n-1)^2; \\ G. C. Greubel, Nov 25 2019
(Magma) [1 + 2*k*(n-k)*(n-1)^2: k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 25 2019
(Sage) [[1 + 2*k*(n-k)*(n-1)^2 for k in (0..n)] for n in (0..12)] # G. C. Greubel, Nov 25 2019
(GAP) Flat(List([0..12], n-> List([0..n], k-> 1 + 2*k*(n-k)*(n-1)^2 ))); # G. C. Greubel, Nov 25 2019
CROSSREFS
Sequence in context: A290311 A322790 A333560 * A176339 A121412 A212855
KEYWORD
nonn,tabl,easy
AUTHOR
Roger L. Bagula, Apr 14 2010
EXTENSIONS
Edited by R. J. Mathar, May 04 2013
STATUS
approved