login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176291
A symmetrical triangle based on Narayana numbers and Eulerian numbers of type B: T(n, k) = 2 + A060187(n, k) - 2*binomial(n, k)*binomial(n+1, k)/(k+1).
1
1, 1, 1, 1, 2, 1, 1, 13, 13, 1, 1, 58, 192, 58, 1, 1, 209, 1584, 1584, 209, 1, 1, 682, 10335, 23200, 10335, 682, 1, 1, 2125, 60267, 258745, 258745, 60267, 2125, 1, 1, 6482, 330942, 2482938, 4671488, 2482938, 330942, 6482, 1, 1, 19585, 1755262, 21702934, 69402712, 69402712, 21702934, 1755262, 19585, 1
OFFSET
0,5
COMMENTS
Row sums are: {1, 2, 4, 28, 310, 3588, 45236, 642276, 10312214, 185760988, 3715773650, ...}.
FORMULA
T(n, k) = 2 + A060187(n, k) - 2*binomial(n, k)*binomial(n+1, k)/(k+1), where A060187(n,k) = Sum_{j=0..k} (-1)^(k-j)*binomial(n+1, k-j)* (2*j+1)^n.
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 2, 1;
1, 13, 13, 1;
1, 58, 192, 58, 1;
1, 209, 1584, 1584, 209, 1;
1, 682, 10335, 23200, 10335, 682, 1;
1, 2125, 60267, 258745, 258745, 60267, 2125, 1;
1, 6482, 330942, 2482938, 4671488, 2482938, 330942, 6482, 1;
MAPLE
b:= binomial; T:= 2 + sum((-1)^j*b(n+1, j)*(2*(k-j)+1)^n, j=0..k) - 2*b(n, k)*b(n+1, k)/(k+1); seq(seq(T(n, k), k = 0 .. n), n = 0 .. 10); # G. C. Greubel, Nov 23 2019
MATHEMATICA
(* First program *)
p[x_, n_]= (1 - x)^(n+1)*Sum[(2*k+1)^n*x^k, {k, 0, Infinity}]; (*A060187*)
f[n_, m_]:= CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x][[m+1]];
T[n_, m_]:= 2 -(-f[n, m] +2*Binomial[n, m]*Binomial[n+1, m]/(m+1));
Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten
(* Second program *)
B:=Binomial; T[n_, k_]:= T[n, k]= 2 +Sum[(-1)^j*B[n+1, j]*(2*(k-j)+1)^n, {j, 0, k}] -2*B[n, k]*B[n+1, k]/(k+1); Table[T[n, k], {n, 0, 10}, {k, 0, n} ]//Flatten (* G. C. Greubel, Nov 23 2019 *)
PROG
(PARI) T(n, k) = b=binomial; 2 + sum(j=0, k, (-1)^j*b(n+1, j)*(2*(k-j)+1)^n) - 2*b(n, k)*b(n+1, k)/(k+1); \\ G. C. Greubel, Nov 23 2019
(Magma) B:=Binomial; [2*(1 - B(n, k)*B(n+1, k)/(k+1)) + (&+[(-1)^j*B(n+1, j) *(2*(k-j)+1)^n: j in [0..k]]): k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 23 2019
(Sage) b=binomial; [[2 + sum( (-1)^j*b(n+1, j)*(2*(k-j)+1)^n for j in (0..k)) - 2*b(n, k)*b(n+1, k)/(k+1) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 23 2019
(GAP) B:=Binomial;; Flat(List([0..10], n-> List([0..n], k-> 2*(1 - B(n, k)*B(n+1, k)/(k+1)) + Sum([0..k], j-> (-1)^j*B(n+1, j)*(2*(k-j)+1)^n) ))); # G. C. Greubel, Nov 23 2019
CROSSREFS
Sequence in context: A173889 A156885 A174718 * A337514 A054505 A132610
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Apr 14 2010
EXTENSIONS
Edited by G. C. Greubel, Nov 23 2019
STATUS
approved