login
A176289
Denominators of the rational sequence with e.g.f. (x/2)*(1+exp(-x))/(1-exp(-x)).
8
1, 1, 6, 1, 30, 1, 42, 1, 30, 1, 66, 1, 2730, 1, 6, 1, 510, 1, 798, 1, 330, 1, 138, 1, 2730, 1, 6, 1, 870, 1, 14322, 1, 510, 1, 6, 1, 1919190, 1, 6, 1, 13530, 1, 1806, 1, 690, 1, 282, 1, 46410, 1, 66, 1, 1590, 1, 798, 1, 870, 1, 354, 1, 56786730, 1, 6, 1, 510
OFFSET
0,3
COMMENTS
Denominator of the Bernoulli number B_n, except a(1)=1. A minor variant of the Bernoulli denominators A027642.
The sequence of fractions A164555(n)/A027642(n) = 1/1, 1/2, 1/6, 0/1, -1/30, ...
and the sequence of fractions A027641(n)/A027642(n) = B_n = 1/1, -1/2, 1/6, 0/1, -1/30, ... differ only (by a sign) at n=1. The arithmetic mean of both sequences is 1/1, 0/1, 1/6, 0/1, -1/30, ..., equal to the aerated sequence A000367(n)/A002445(n). The definition here provides the denominators of this sequence of arithmetic means.
LINKS
FORMULA
a(2*n) = A002445(n), a(2*n+1)=1.
a(n) = A027642(n) for n <> 1.
MAPLE
seq(denom((bernoulli(i, 0)+bernoulli(i, 1))/2), i=0..64); # Peter Luschny, Jun 17 2012
MATHEMATICA
Join[{1, 1}, Rest[Denominator[BernoulliB[Range[80]]]]] (* Harvey P. Dale, Jun 18 2012 *)
PROG
(PARI) apply(deniominator, Vec(serlaplace((x/2)*(1+exp(-x))/(1-exp(-x))))) \\ Charles R Greathouse IV, Sep 26 2017
(PARI) A176289(n) = if(1==n, n, denominator(bernfrac(n))); \\ Antti Karttunen, Dec 19 2018
CROSSREFS
Cf. A027641, A027642, A164555, A176327 (numerators), A141056.
Sequence in context: A147327 A145629 A193633 * A118933 A046212 A120105
KEYWORD
nonn,frac
AUTHOR
Paul Curtz, Apr 14 2010
EXTENSIONS
More terms from Harvey P. Dale, May 03 2012
New name from Peter Luschny, Jun 18 2012
STATUS
approved