login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176287
Diagonal sums of number triangle A092392.
5
1, 2, 7, 23, 81, 291, 1066, 3955, 14818, 55937, 212428, 810664, 3106167, 11942261, 46047897, 178000950, 689580319, 2676598447, 10406929687, 40525045518, 158022343991, 616950024334, 2411395005316, 9434753907065, 36948692202031
OFFSET
0,2
COMMENTS
Hankel transform is A176288.
LINKS
FORMULA
G.f.: 1/(sqrt(1-4*x)*(1-x^2*c(x))) = 2/(sqrt(1-4*x)*(2-x+x*sqrt(1-4*x))), c(x) the g.f. of A000108.
a(n) = Sum_{k=0..floor(n/2)} C(2n-3k,n-k).
a(n) = Sum_{k=0..n} A000984(k)*A132364(n-k).
D-finite with recurrence: 2*n*a(n) +(6-11*n)*a(n-1) +(13*n-16)*a(n-2) +2*(5-n)*a(n-3) +3*(2-3*n)*a(n-4) +2*(2*n-5)*a(n-5)=0. - R. J. Mathar, Nov 15 2012 [Verified with Maple's FindRE and MinimalRecurrence functions, Georg Fischer, Nov 03 2022]
a(n) ~ 2^(2*n+3) / (7*sqrt(Pi*n)). - Vaclav Kotesovec, Feb 04 2014
MAPLE
seq( add(binomial(2*n-3*k, n-k), k=0..floor(n/2)) , n=0..25); # G. C. Greubel, Nov 25 2019
MATHEMATICA
CoefficientList[Series[2/(Sqrt[1-4*x]*(2-x+x*Sqrt[1-4*x])), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 04 2014 *)
a[n_]:= Sum[Binomial[2*n-3*k, n-k], {k, 0, Floor[n/2]}]; Table[a[n], {n, 0, 25}] (* G. C. Greubel, Oct 19 2016 *)
PROG
(PARI) a(n) = sum(k=0, n\2, binomial(2*n-3*k, n-k)); \\ Michel Marcus, Oct 20 2016
(Magma) [ &+[Binomial(2*n-3*k, n-k): k in [0..Floor(n/2)]] : n in [0..25]]; // G. C. Greubel, Nov 25 2019
(Sage) [sum(binomial(2*n-3*k, n-k) for k in (0..floor(n/2))) for n in (0..25)] # G. C. Greubel, Nov 25 2019
(GAP) List([0..25], n-> Sum([0..Int(n/2)], k-> Binomial(2*n-3*k, n-k) )); # G. C. Greubel, Nov 25 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Apr 14 2010
STATUS
approved