login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143629
Define E(n) = Sum_{k>=0} (-1)^floor(k/3)*k^n/k! for n = 0,1,2,... . Then E(n) is an integral linear combination of E(0), E(1) and E(2). This sequence lists the coefficients of E(1).
12
0, 1, 0, -2, -7, -23, -80, -271, -750, -647, 13039, 152011, 1232583, 8750796, 57405464, 349329354, 1899818951, 8008845556, 5981853002, -425732481925, -7285403175563, -89895756043392, -970910901819211, -9663021449412616
OFFSET
0,4
COMMENTS
This sequence and its companion sequences A143628 and A143630 may be viewed as generalizations of the Uppuluri-Carpenter numbers (complementary Bell numbers) A000587. Define E(n) = Sum_{k>=0} (-1)^floor(k/3)*k^n/k! = 0^n/0! + 1^n/1! + 2^n/2! - 3^n/3! - 4^n/4! - 5^n/5! + + + - - - ... for n = 0,1,2,... . It is easy to see that E(n+3) = 3*E(n+2) - 2*E(n+1) - Sum_{i = 0..n} 3^i*binomial(n,i)*E(n-i) for n >= 0. Thus E(n) is an integral linear combination of E(0), E(1) and E(2). This sequence lists the coefficients of E(1). Some examples are given below. The precise result for E(n) as a linear combination of E(0), E(1) and E(2) is E(n) = A143628(n)*E(0) + A143629(n)*E(1) + A143630(n)*E(2). Compare with A121867 and A143815.
FORMULA
Define three sequences A(n), B(n) and C(n) by the relations: A(n+1) = - Sum_{i = 0..n} binomial(n,i)*C(i), B(n+1) = Sum_{i = 0..n} binomial(n,i)*A(i), C(n+1) = Sum_{i = 0..n} binomial(n,i)*B(i), with initial conditions A(0) = 1, B(0) = C(0) = 0. Then a(n) = B(n) - C(n). The other sequences are A(n) = A143628(n) and C(n) = A143630(n). The values of B(n) are recorded in A143631. Compare with A143818. Also a(n) = A143628(n) - A000587(n).
EXAMPLE
E(n) as linear combination of E(i),
i = 0..2.
====================================
..E(n)..|.....E(0).....E(1)....E(2).
====================================
..E(3)..|......-1......-2........3..
..E(4)..|......-6......-7........7..
..E(5)..|.....-25.....-23.......14..
..E(6)..|.....-89.....-80.......16..
..E(7)..|....-280....-271......-77..
..E(8)..|....-700....-750.....-922..
..E(9)..|....-380....-647....-6660..
..E(10).|...13452...13039...-41264..
...
a(5) = -23 because E(5) = -25*E(0) - 23*E(1) + 14*E(2).
a(6) = -80 because E(6) = -89*E(0) - 80*E(1) + 16*E(2).
MAPLE
# Compare with A143818
M:=24: a:=array(0..100): b:=array(0..100): c:=array(0..100):
a[0]:=1: b[0]:=0: c[0]:=0:
for n from 1 to M do
a[n]:= -add(binomial(n-1, k)*c[k], k=0..n-1);
b[n]:= add(binomial(n-1, k)*a[k], k=0..n-1);
c[n]:= add(binomial(n-1, k)*b[k], k=0..n-1);
end do:
A143629:=[seq(b[n]-c[n], n=0..M)];
MATHEMATICA
m = 23; a[0] = 1; b[0] = 0; c[0] = 0; For[n = 1, n <= m, n++, a[n] = -Sum[ Binomial[n - 1, k]*c[k], {k, 0, n - 1}]; b[n] = Sum[ Binomial[n - 1, k]*a[k], {k, 0, n - 1}]; c[n] = Sum[ Binomial[n - 1, k]*b[k], {k, 0, n - 1}] ]; A143629 = Table[b[n] - c[n], {n, 0, m}] (* Jean-François Alcover, Mar 06 2013, after Maple *)
KEYWORD
easy,sign
AUTHOR
Peter Bala, Sep 05 2008
STATUS
approved