login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143630
Define E(n) = Sum_{k >= 0} (-1)^floor(k/3)*k^n/k! for n = 0,1,2,.... Then E(n) is an integral linear combination of E(0), E(1) and E(2). This sequence lists the coefficients of E(2).
13
0, 0, 1, 3, 7, 14, 16, -77, -922, -6660, -41264, -233828, -1218392, -5607225, -19220589, 4397930, 1016675382, 14251497833, 151695504253, 1432992328055, 12527186450276, 102042171190168, 760272520469199, 4849866087637364
OFFSET
0,4
COMMENTS
This sequence and its companion sequences A143628 and A143629 may be viewed as generalizations of the Uppuluri-Carpenter numbers (complementary Bell numbers) A000587. Define E(n) = Sum_{k >= 0} (-1)^floor(k/3)*k^n/k! = 0^n/0! + 1^n/1! + 2^n/2! - 3^n/3! - 4^n/4! - 5^n/5! + + + - - - ... for n = 0,1,2,.... It is easy to see that E(n+3) = 3*E(n+2) - 2*E(n+1) - Sum_{i = 0..n} 3^i*binomial(n,i)*E(n-i) for n >= 0. Thus E(n) is an integral linear combination of E(0), E(1) and E(2). Some examples are given below. This sequence lists the coefficients of E(2). The precise result is E(n) = A143628(n)*E(0) + A143629(n)*E(1) + A143630(n)*E(2). Compare with A121867 and A143815.
LINKS
Eric Weisstein's World of Mathematics, Bell Polynomial.
FORMULA
Define three sequences A(n), B(n) and C(n) by the relations: A(n+1) = - Sum_{i = 0..n} binomial(n,i)*C(i), B(n+1) = Sum_{i = 0..n} binomial(n,i)*A(i), C(n+1) = Sum_{i = 0..n} binomial(n,i)*B(i), with initial conditions A(0) = 1, B(0) = C(0) = 0. Then a(n) = C(n). The other sequences are A(n) = A143628 and B(n) = A143631. Compare with A143817.
From Seiichi Manyama, Oct 15 2022: (Start)
a(n) = Sum_{k = 0..floor((n-2)/3)} (-1)^k * Stirling2(n,3*k+2).
a(n) = ( Bell_n(-1) + w * Bell_n(-w) + w^2 * Bell_n(-w^2) )/3, where Bell_n(x) is n-th Bell polynomial and w = exp(2*Pi*i/3). (End)
EXAMPLE
E(n) as linear combination of E(i),
i = 0..2.
====================================
..E(n)..|.....E(0)....E(1).....E(2).
====================================
..E(3)..|......-1......-2........3..
..E(4)..|......-6......-7........7..
..E(5)..|.....-25.....-23.......14..
..E(6)..|.....-89.....-80.......16..
..E(7)..|....-280....-271......-77..
..E(8)..|....-700....-750.....-922..
..E(9)..|....-380....-647....-6660..
..E(10).|...13452...13039...-41264..
...
a(5) = 14 because E(5) = -25*E(0) - 23*E(1) + 14*E(2).
a(6) = 16 because E(6) = -89*E(0) - 80*E(1) + 16*E(2).
MAPLE
# Compare with A143817
#
M:=24: a:=array(0..100): b:=array(0..100): c:=array(0..100):
a[0]:=1: b[0]:=0: c[0]:=0:
for n from 1 to M do
a[n]:= -add(binomial(n-1, k)*c[k], k=0..n-1);
b[n]:= add(binomial(n-1, k)*a[k], k=0..n-1);
c[n]:= add(binomial(n-1, k)*b[k], k=0..n-1);
end do:
A143630:=[seq(c[n], n=0..M)];
MATHEMATICA
m = 23; a[0] = 1; b[0] = 0; c[0] = 0; For[n = 1, n <= m, n++, a[n] = -Sum[Binomial[n - 1, k]*c[k], {k, 0, n - 1}]; b[n] = Sum[Binomial[n - 1, k]*a[k], {k, 0, n - 1}]; c[n] = Sum[Binomial[n - 1, k]*b[k], {k, 0, n - 1}]]; A143630 = Table[c[n], {n, 0, m}] (* Jean-François Alcover, Mar 06 2013, after Maple *)
PROG
(PARI) Bell_poly(n, x) = exp(-x)*suminf(k=0, k^n*x^k/k!);
a(n) = my(w=(-1+sqrt(3)*I)/2); round(Bell_poly(n, -1)+w*Bell_poly(n, -w)+w^2*Bell_poly(n, -w^2))/3; \\ Seiichi Manyama, Oct 15 2022
KEYWORD
easy,sign
AUTHOR
Peter Bala, Sep 05 2008
STATUS
approved