OFFSET
0,6
COMMENTS
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..578
Eric Weisstein's World of Mathematics, Bell Polynomial.
FORMULA
From Seiichi Manyama, Oct 15 2022: (Start)
a(n) = Sum_{k = 0..floor((n-1)/3)} (-1)^k * Stirling2(n,3*k+1).
a(n) = -( Bell_n(-1) + w^2 * Bell_n(-w) + w * Bell_n(-w^2) )/3, where Bell_n(x) is n-th Bell polynomial and w = exp(2*Pi*i/3). (End)
MAPLE
# Compare with A143816
#
M:=24: a:=array(0..100): b:=array(0..100): c:=array(0..100):
a[0]:=1: b[0]:=0: c[0]:=0:
for n from 1 to M do
a[n]:= -add(binomial(n-1, k)*c[k], k=0..n-1);
b[n]:= add(binomial(n-1, k)*a[k], k=0..n-1);
c[n]:= add(binomial(n-1, k)*b[k], k=0..n-1);
end do:
A143631:=[seq(b[n], n=0..M)];
MATHEMATICA
m = 23; a[0] = 1; b[0] = 0; c[0] = 0; For[n = 1, n <= m, n++, b[n] = -Sum[Binomial[n - 1, k]*a[k], {k, 0, n - 1}]; c[n] = Sum[Binomial[n - 1, k]*b[k], {k, 0, n - 1}]; a[n] = Sum[Binomial[n - 1, k]*c[k], {k, 0, n - 1}]]; A143631 = Table[ -b[n], {n, 0, m}] (* Jean-François Alcover, Mar 06 2013, after Maple *)
PROG
(PARI) Bell_poly(n, x) = exp(-x)*suminf(k=0, k^n*x^k/k!);
a(n) = my(w=(-1+sqrt(3)*I)/2); -round(Bell_poly(n, -1)+w^2*Bell_poly(n, -w)+w*Bell_poly(n, -w^2))/3; \\ Seiichi Manyama, Oct 15 2022
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Peter Bala, Sep 05 2008
STATUS
approved