The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A143631 Let A(0)=1, B(0)=0 and C(0)=0. Let A(n+1) = - sum {k = 0..n) binomial(n,k)*C(k), B(n+1) = sum {k = 0..n) binomial(n,k)*A(k) and C(n+1) = sum {k = 0..n) binomial(n,k)*B(k). This entry gives the sequence B(n). 10
 0, 1, 1, 1, 0, -9, -64, -348, -1672, -7307, -28225, -81817, 14191, 3143571, 38184875, 353727284, 2916494333, 22260343389, 157677357255, 1007259846130, 5241783274713, 12146415146776, -210638381350012, -4813155361775252 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 COMMENTS The other sequences are A(n) = A143628(n) and C(n) = A143630(n). Compare with A121867 and A121868. See also A143816. LINKS FORMULA a(n) = A143629(n) + A143630(n). MAPLE # Compare with A143816 # M:=24: a:=array(0..100): b:=array(0..100): c:=array(0..100): a[0]:=1: b[0]:=0: c[0]:=0: for n from 1 to M do a[n]:= -add(binomial(n-1, k)*c[k], k=0..n-1); b[n]:= add(binomial(n-1, k)*a[k], k=0..n-1); c[n]:= add(binomial(n-1, k)*b[k], k=0..n-1); end do: A143631:=[seq(b[n], n=0..M)]; MATHEMATICA m = 23; a[0] = 1; b[0] = 0; c[0] = 0; For[n = 1, n <= m, n++, b[n] = -Sum[Binomial[n - 1, k]*a[k], {k, 0, n - 1}]; c[n] = Sum[Binomial[n - 1, k]*b[k], {k, 0, n - 1}];  a[n] = Sum[Binomial[n - 1, k]*c[k], {k, 0, n - 1}]]; A143631 = Table[ -b[n], {n, 0, m}] (* Jean-François Alcover, Mar 06 2013, after Maple *) CROSSREFS A121867, A121868, A143628, A143629, A143630, A143816. Sequence in context: A018201 A181888 A000444 * A083328 A000846 A231822 Adjacent sequences:  A143628 A143629 A143630 * A143632 A143633 A143634 KEYWORD easy,sign AUTHOR Peter Bala, Sep 05 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 4 07:20 EDT 2021. Contains 346442 sequences. (Running on oeis4.)