OFFSET
0,3
COMMENTS
It appears that, with the exception of n = 49, a(n)== 1 (mod n^2) only if n is prime. (Tested to 10,000.) - Gary Detlefs, Aug 06 2013
LINKS
T. D. Noe, Table of n, a(n) for n = 0..200
FORMULA
a(n) = Sum_{k = 1..n} binomial(n,k)*binomial(2*n,n-k). - Vladimir Kruchinin, Nov 12 2014
D-finite with recurrence 2*n*(n-1)*(2*n-1)*(11*n^2-33*n+24)*a(n) -(n-1) *(473*n^4 -1892*n^3 +2561*n^2 -1338*n +216) *a(n-1) +6 *(3*n-5) *(3*n-4) *(2*n-3) *(11*n^2-11*n+2) *a(n-2)=0. - R. J. Mathar, May 05 2018
MAPLE
seq(binomial(3*n, n)-binomial(2*n, n), n=0..10) ; # R. J. Mathar, May 05 2018
MATHEMATICA
Table[Binomial[3*n, n] - Binomial[2*n, n], {n, 0, 20}] (* T. D. Noe, Jun 20 2012 *)
PROG
(Magma) [Binomial(3*n, n)-Binomial(2*n, n): n in [0..30]]; // Vincenzo Librandi, Nov 12 2014
(Python)
from math import comb
def A000846(n): return comb(3*n, n)-comb(n<<1, n) # Chai Wah Wu, Sep 07 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved