login
A000444
Number of partially labeled rooted trees with n nodes (3 of which are labeled).
(Formerly M4641 N1984)
3
9, 64, 326, 1433, 5799, 22224, 81987, 293987, 1031298, 3555085, 12081775, 40576240, 134919788, 444805274, 1455645411, 4733022100, 15302145060, 49223709597, 157629612076, 502736717207, 1597541346522, 5059625685739, 15975936032821, 50304490599602
OFFSET
3,1
REFERENCES
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 134.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
G.f.: A(x) = B(x)^3*(9-8*B(x)+2*B(x)^2)/(1-B(x))^5, where B(x) is g.f. for rooted trees with n nodes, cf. A000081.
a(n) ~ c * d^n * n^(3/2), where d = A051491 = 2.9557652856519949747148..., c = 0.244665117500618173509... . - Vaclav Kotesovec, Sep 11 2014
MAPLE
b:= proc(n) option remember; if n<=1 then n else add(k*b(k)* s(n-1, k), k=1..n-1)/(n-1) fi end: s:= proc(n, k) option remember; add(b(n+1-j*k), j=1..iquo(n, k)) end: B:= proc(n) option remember; add(b(k)*x^k, k=1..n) end: a:= n-> coeff(series(B(n-2)^3*(9-8*B(n-2)+2*B(n-2)^2)/(1-B(n-2))^5, x=0, n+1), x, n): seq(a(n), n=3..24); # Alois P. Heinz, Aug 21 2008
MATHEMATICA
b[n_] := b[n] = If[n <= 1, n, Sum[k*b[k]*s[n-1, k], {k, 1, n-1}]/(n-1)]; s[n_, k_] := s[n, k] = Sum[b[n+1-j*k], {j, 1, Quotient[n, k]}]; B[n_] := B[n] = Sum [b[k]*x^k, {k, 1, n}]; a[n_] := Coefficient[Series[B[n-2]^3*(9 - 8*B[n-2] + 2*B[n-2]^2)/(1 - B[n-2])^5, {x, 0, n+1}], x, n]; Table[a[n], {n, 3, 30}] (* Jean-François Alcover, Mar 10 2014, after Alois P. Heinz *)
CROSSREFS
Column k=3 of A008295.
Cf. A042977.
Sequence in context: A099761 A018201 A181888 * A143631 A083328 A000846
KEYWORD
nonn
EXTENSIONS
More terms from Vladeta Jovovic, Oct 19 2001
STATUS
approved