login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000441
a(n) = Sum_{k=1..n-1} k*sigma(k)*sigma(n-k).
(Formerly M4613 N1968)
9
0, 1, 9, 34, 95, 210, 406, 740, 1161, 1920, 2695, 4116, 5369, 7868, 9690, 13640, 16116, 22419, 25365, 34160, 38640, 50622, 55154, 73320, 77225, 100100, 107730, 135576, 141085, 182340, 184760, 233616, 243408, 297738, 301420, 385110, 377511, 467210, 478842
OFFSET
1,3
COMMENTS
Apart from initial zero this is the convolution of A340793 and A143128. - Omar E. Pol, Feb 16 2021
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
J. Touchard, On prime numbers and perfect numbers, Scripta Math., 129 (1953), 35-39.
LINKS
J. Touchard, On prime numbers and perfect numbers, Scripta Math., 129 (1953), 35-39. [Annotated scanned copy]
FORMULA
Convolution of A000203 with A064987. - Sean A. Irvine, Nov 14 2010
G.f.: x*f(x)*f'(x), where f(x) = Sum_{k>=1} k*x^k/(1 - x^k). - Ilya Gutkovskiy, Apr 28 2018
a(n) = (n/24 - n^2/4)*sigma_1(n) + (5*n/24)*sigma_3(n). - Ridouane Oudra, Sep 17 2020
Sum_{k=1..n} a(k) ~ Pi^4 * n^5 / 2160. - Vaclav Kotesovec, May 09 2022
MAPLE
S:=(n, e)->add(k^e*sigma(k)*sigma(n-k), k=1..n-1);
f:=e->[seq(S(n, e), n=1..30)]; f(1); # N. J. A. Sloane, Jul 03 2015
MATHEMATICA
a[n_] := Sum[k*DivisorSigma[1, k]*DivisorSigma[1, n-k], {k, 1, n-1}]; Array[a, 40] (* Jean-François Alcover, Feb 08 2016 *)
PROG
(PARI) a(n) = sum(k=1, n-1, k*sigma(k)*sigma(n-k)); \\ Michel Marcus, Feb 02 2014
(Python)
from sympy import divisor_sigma
def A000441(n): return (n*(1-6*n)*divisor_sigma(n)+5*n*divisor_sigma(n, 3))//24 # Chai Wah Wu, Jul 25 2024
CROSSREFS
KEYWORD
nonn
EXTENSIONS
More terms from Sean A. Irvine, Nov 14 2010
a(1)=0 prepended by Michel Marcus, Feb 02 2014
STATUS
approved