OFFSET
4,1
REFERENCES
J. Riordan, Discordant permutations, Scripta Math., 20 (1954), 14-23.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
J. Riordan, Discordant permutations, Scripta Math., 20 (1954), 14-23. [Annotated scanned copy]
FORMULA
a(n) = coefficient of y^4 in sum_0^n sigma_{n, k}(n-k)!(y-1)^k on y where the sigma_{n, k} have generating function sigma(t, u)=(1-2t^2(u^2)-2t^2(1+t)u^3+3t^4(u^4))(1-tu)^(-1)(1-(1+2t)u-tu^2+t^3(u^3))^(-1). - Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Feb 17 2001
MAPLE
Snkgf := (t, u) - >(1 - t*u)^( - 1)*(1 - (1 + 2*t)*u - t*u^2 + t^3*u^3)^( - 1); sigmankgf := (t, u) - >(1 - 2*t^2*u^2 - 2*t^2*(1 + t)*u^3 + 3*t^4*u^4)*Snkgf(t, u); f := (n, k) - >coeff(sum(coeff(subs(u=0, diff(sigmankgf(t, u), u$n))/n!, t, j)*(n - j)!*(y - 1)^j, j =0..n), y, k); seq(f(i, 4), i=4..30); # Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Feb 17 2001
MATHEMATICA
sigma[t_, u_] = (1 - 2 t^2 (u^2) - 2 t^2 (1+t) u^3 + 3 t^4 (u^4)) (1 - t*u)^(-1) (1 - (1+2t) u - t*u^2 + t^3 (u^3))^(-1); ds[t_, n_] := D[sigma[t, u], {u, n}] /. u -> 0; f[n_, k_] := Coefficient[Sum[Coefficient[ds[t, n]/n!, t, j]*(n-j)!*(y-1)^j, {j, 0, n}], y, k]; Table[f[i, 4], {i, 4, 22}] (* Jean-François Alcover, May 27 2011, after Maple prog. *)
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Feb 17 2001
STATUS
approved