login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000476 Number of permutations of an n-sequence discordant with three given permutations (see reference) in n-1 places.
(Formerly M4970 N2133)
7
15, 72, 609, 4960, 46188, 471660, 5275941, 64146768, 842803767, 11902900380, 179857257960, 2895705788736, 49491631601635, 895010868095256, 17074867330880805, 342733960299356800, 7220616209235766260, 159312370008282356844, 3673720238903201471593 (list; graph; refs; listen; history; text; internal format)
OFFSET

5,1

REFERENCES

J. Riordan, Discordant permutations, Scripta Math., 20 (1954), 14-23.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Table of n, a(n) for n=5..23.

J. Riordan, Discordant permutations, Scripta Math., 20 (1954), 14-23. [Annotated scanned copy]

FORMULA

a(n) = coefficient of y in sum_0^n sigma_{n, k}(n-k)!(y-1)^k on y where the sigma_{n, k} have generating function sigma(t, u)=(1-2t^2(u^2)-2t^2(1+t)u^3+3t^4(u^4))(1-tu)^(-1)(1-(1+2t)u-tu^2+t^3(u^3))^(-1). - Barbara Haas Margolius (margolius(AT)math.csuohio.edu) Feb 17 2001

MAPLE

seq(f(n, 1), n=5..30); # where code for f(n, k) is given in A000440 - Barbara Haas Margolius (margolius(AT)math.csuohio.edu) Feb 17 2001

MATHEMATICA

sigma[t_, u_] = (1 - 2 t^2 (u^2) - 2 t^2 (1 + t) u^3 + 3 t^4 (u^4)) (1 - t* u)^(-1) (1 - (1 + 2 t) u - t *u^2 + t^3 (u^3))^(-1); ds[t_, n_] := D[sigma[t, u], {u, n}] /. u -> 0; su[n_] := su[n] = Sum[ Coefficient[ds[t, n]/n!, t, j]*(n - j)!*(y - 1)^j, {j, 0, n}]; f[n_, k_] := Coefficient[su[n], y, k]; Table[f[n, 1], {n, 5, 23}] (* Jean-François Alcover, Sep 01 2011, after Maple prog. *)

CROSSREFS

Cf. A000500, A000470, A000440, A000492, A000380, A000388.

Sequence in context: A212097 A212098 A053531 * A002603 A212562 A212092

Adjacent sequences: A000473 A000474 A000475 * A000477 A000478 A000479

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Feb 17 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 28 03:48 EDT 2023. Contains 361577 sequences. (Running on oeis4.)