login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A000475
Rencontres numbers: number of permutations of [n] with exactly 4 fixed points.
(Formerly M4969 N2132)
12
1, 0, 15, 70, 630, 5544, 55650, 611820, 7342335, 95449640, 1336295961, 20044438050, 320711010620, 5452087178160, 98137569209940, 1864613814984984, 37292276299704525, 783137802293789040, 17229031650463366195, 396267727960657413630
OFFSET
4,3
REFERENCES
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 65.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
a(n) = sum((-1)^j*n!/(4!*j!), j=2..n-4) = A008290(n,4).
a(n) = A000166(n)*binomial(n+4, 4). - Robert Goodhand (robert(AT)rgoodhand.fsnet.co.uk), Nov 08 2001
E.g.f.: (exp(-x)/(1-x))*(x^4/4!). In general, for k fixed points:(exp(-x)/(1-x)) * (x^k/k!). - Wenjin Woan, Nov 22 2008
a(n) ~ n! * exp(-1)/24, in general a(n) ~ n! * exp(-1)/k!. - Vaclav Kotesovec, Mar 16 2014
a(n) = n*a(n-1) + (-1)^n*binomial(n,4) with a(n) = 0 for n = 0,1,2,3. - Chai Wah Wu, Nov 01 2014
D-finite with recurrence (-n+4)*a(n) +n*(n-5)*a(n-1) +n*(n-1)*a(n-2)=0. - R. J. Mathar, Nov 02 2015
O.g.f.: (1/24)*Sum_{k>=4} k!*x^k/(1 + x)^(k+1). - Ilya Gutkovskiy, Apr 13 2017
MAPLE
a:=n->sum(n!*sum((-1)^k/(k-3)!, j=0..n), k=3..n): seq(-a(n)/4!, n=3..22); # Zerinvary Lajos, May 25 2007
G(x):=exp(-x)/(1-x)*(x^4/4!): f[0]:=G(x): for n from 1 to 26 do f[n]:=diff(f[n-1], x) od: x:=0: seq(f[n], n=4..23); # Zerinvary Lajos, Apr 03 2009
MATHEMATICA
Table[Subfactorial[n - 4]*Binomial[n, 4], {n, 4, 23}] (* Zerinvary Lajos, Jul 10 2009 *)
PROG
(PARI) x='x+O('x^66); Vec( serlaplace(exp(-x)/(1-x)*(x^4/4!)) ) \\ Joerg Arndt, Feb 19 2014
(Python)
from sympy import binomial
A000475_list, m, x = [], 1, 0
for n in range(4, 100):
x, m = x*n + m*binomial(n, 4), -m
A000475_list.append(x) # Chai Wah Wu, Nov 01 2014
CROSSREFS
Cf. A008290.
A diagonal of A008291.
Cf. A170942.
Sequence in context: A053134 A320917 A343871 * A253476 A308596 A145053
KEYWORD
nonn
EXTENSIONS
Formula corrected by Sean A. Irvine, Oct 26 2010
STATUS
approved