|
|
A000472
|
|
a(n) = a(n-1)^2 + (a(n-2) + 1)*(a(n-1) - a(n-2)^2).
|
|
1
|
|
|
|
OFFSET
|
1,1
|
|
REFERENCES
|
Damiani, E.; D'Antona, O.; Naldi, G.; and Pavarino, L.; Tiling bricks with bricks. Stud. Appl. Math. 83 (1990), number 2, 91-110.
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 1..14
Index entries for sequences related to bricks
|
|
MAPLE
|
A000472 := proc(n) option remember; if n<=2 then 3*n-1 else A000472(n-1)^2+(1+A000472(n-2))*(A000472(n-1)-A000472(n-2)^2); fi; end;
|
|
MATHEMATICA
|
RecurrenceTable[{a[1]==2, a[2]==5, a[n]==a[n-1]^2+(a[n-2]+1)(a[n-1]- a[n-2]^2)}, a[n], {n, 10}] (* Harvey P. Dale, Sep 29 2011 *)
|
|
PROG
|
(Magma) I:=[2, 5]; [n le 2 select I[n] else Self(n-1)^2 + (Self(n-2)+1)*(Self(n-1)-Self(n-2)^2 ): n in [1..10]]; // Vincenzo Librandi, Sep 30 2011
(Haskell)
a000472 n = a000472_list !! (n-1)
a000472_list = 2 : 5 : zipWith (+) (map (^ 2) $ tail a000472_list)
(zipWith (*) (map (+ 1) a000472_list)
(zipWith (-) (tail a000472_list)
(map (^ 2) a000472_list)))
-- Reinhard Zumkeller, Oct 03 2012
|
|
CROSSREFS
|
Sequence in context: A306893 A105787 A110497 * A248235 A358444 A327345
Adjacent sequences: A000469 A000470 A000471 * A000473 A000474 A000475
|
|
KEYWORD
|
nonn,nice,easy
|
|
AUTHOR
|
Ottavio D'Antona [ dantona(AT)hermes.dsi.unimi.it ]
|
|
STATUS
|
approved
|
|
|
|