login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A053134 Binomial coefficients C(2*n+4,4). 9
1, 15, 70, 210, 495, 1001, 1820, 3060, 4845, 7315, 10626, 14950, 20475, 27405, 35960, 46376, 58905, 73815, 91390, 111930, 135751, 163185, 194580, 230300, 270725, 316251, 367290, 424270, 487635, 557845, 635376, 720720, 814385, 916895, 1028790, 1150626, 1282975 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Even-indexed members of fifth column of Pascal's triangle A007318.

Number of standard tableaux of shape (2n+1,1^4). - Emeric Deutsch, May 30 2004

Number of integer solutions to -n <= x <= y <= z <= w <= n. - Michael Somos, Dec 28 2011

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

Milan Janjic, Two Enumerative Functions

Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).

FORMULA

a(n) = binomial(2*n+4, 4) = A000332(2*n+4).

G.f.: (1+10*x+5*x^2)/(1-x)^5.

a(1 - n) = A053126(n). - Michael Somos, Dec 28 2011

E.g.f.: (6 +84*x +123*x^2 +44*x^3 +4*x^4)*exp(x)/6. - G. C. Greubel, Sep 03 2018

EXAMPLE

1 + 15*x + 70*x^2 + 210*x^3 + 495*x^4 + 1001*x^5 + 1820*x^6 + 3060*x^7 + ...

MATHEMATICA

Table[Binomial[2*n+4, 4], {n, 0, 30}] (* or *) LinearRecurrence[{5, -10, 10, -5 , 1}, {1, 15, 70, 210, 495}, 30] (* G. C. Greubel, Sep 03 2018 *)

PROG

(MAGMA) [Binomial(2*n+4, 4): n in [0..30]]; // Vincenzo Librandi, Oct 07 2011

(PARI) for(n=0, 30, print1(binomial(2*n+4, 4), ", ")) \\ G. C. Greubel, Sep 03 2018

CROSSREFS

Cf. A000447, A002299, A053126, A000332.

Sequence in context: A212109 A124893 A126402 * A320917 A000475 A253476

Adjacent sequences:  A053131 A053132 A053133 * A053135 A053136 A053137

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 19 02:01 EST 2018. Contains 317332 sequences. (Running on oeis4.)