login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053131
Binomial coefficients C(2*n-8,9).
6
10, 220, 2002, 11440, 48620, 167960, 497420, 1307504, 3124550, 6906900, 14307150, 28048800, 52451256, 94143280, 163011640, 273438880, 445891810, 708930508, 1101716330, 1677106640, 2505433700, 3679075400, 5317936260, 7575968400, 10648873950, 14783142660
OFFSET
9,1
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings).
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45, 10,-1).
FORMULA
a(n) = binomial(2*n-8, 9) if n >= 9 else 0.
G.f.: (10+120*x+252*x^2+120*x^3+10*x^4)/(1-x)^10.
a(n) = 2*A053133(n).
a(n) = -A053123(n,9), n >= 9; a(n) := 0, n=0..8 (tenth column of shifted Chebyshev's S-triangle, decreasing order).
From Amiram Eldar, Oct 21 2022: (Start)
Sum_{n>=9} 1/a(n) = 223611/280 - 1152*log(2).
Sum_{n>=9} (-1)^(n+1)/a(n) = 72*log(2) - 13947/280. (End)
MATHEMATICA
Binomial[2*Range[9, 40]-8, 9] (* Harvey P. Dale, Mar 19 2012 *)
PROG
(Magma)[Binomial(2*n-8, 9): n in [9..40]]; // Vincenzo Librandi, Oct 07 2011
(PARI) for(n=9, 50, print1(binomial(2*n-8, 9), ", ")) \\ G. C. Greubel, Aug 26 2018
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved