login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053130
Binomial coefficients C(2*n-7,8).
7
9, 165, 1287, 6435, 24310, 75582, 203490, 490314, 1081575, 2220075, 4292145, 7888725, 13884156, 23535820, 38608020, 61523748, 95548245, 145008513, 215553195, 314457495, 450978066, 636763050, 886322710, 1217566350, 1652411475, 2217471399, 2944827765, 3872894697
OFFSET
8,1
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings).
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
FORMULA
a(n) = binomial(2*n-7, 8) if n >= 8 else 0.
G.f.: (9+84*x+126*x^2+36*x^3+x^4)/(1-x)^9.
a(n) = A053123(n,8), n >= 8; a(n) := 0, n=0..7, (ninth column of shifted Chebyshev's S-triangle, decreasing order).
From Amiram Eldar, Oct 21 2022: (Start)
Sum_{n>=8} 1/a(n) = 37276/105 - 512*log(2).
Sum_{n>=8} (-1)^n/a(n) = 592/21 - 16*Pi + 32*log(2). (End)
MATHEMATICA
Table[Binomial[2*n-7, 8], {n, 8, 50}] (* G. C. Greubel, Aug 26 2018 *)
PROG
(Magma) [Binomial(2*n-7, 8): n in [8..50]]; // Vincenzo Librandi, Apr 07 2011
(PARI) for(n=8, 50, print1(binomial(2*n-7, 8), ", ")) \\ G. C. Greubel, Aug 26 2018
CROSSREFS
Sequence in context: A354892 A377329 A086759 * A219074 A166180 A376174
KEYWORD
nonn,easy
STATUS
approved