login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053123
Triangle of coefficients of shifted Chebyshev's S(n,x-2)= U(n,x/2-1) polynomials (exponents of x in decreasing order).
17
1, 1, -2, 1, -4, 3, 1, -6, 10, -4, 1, -8, 21, -20, 5, 1, -10, 36, -56, 35, -6, 1, -12, 55, -120, 126, -56, 7, 1, -14, 78, -220, 330, -252, 84, -8, 1, -16, 105, -364, 715, -792, 462, -120, 9, 1, -18, 136, -560, 1365, -2002, 1716, -792, 165, -10, 1, -20, 171, -816, 2380, -4368, 5005, -3432, 1287, -220, 11, 1
OFFSET
0,3
COMMENTS
T(n,m)= A053122(n,n-m).
G.f. for row polynomials and row sums same as in A053122.
Unsigned column sequences are A000012, A005843, A014105, A002492 for m=0..3, resp. and A053126-A053131 for m=4..9.
This is also the coefficient triangle for Chebyshev's U(2*n+1,x) polynomials expanded in decreasing odd powers of (2*x): U(2*n+1,x) = Sum_{m=0..n} (T(n,m)*(2*x)^(2*(n-m)+1). See the W. Lang link given in A053125.
Unsigned version is mirror image of A078812. - Philippe Deléham, Dec 02 2008
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795
Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
Stephen Barnett, "Matrices: Methods and Applications", Oxford University Press, 1990, p. 132, 343.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
FORMULA
T(n, m) = 0 if n<m else (-1)^m*binomial(2*n+1-m, m);
T(n, m) = -2*T(n-1, m-1) + T(n-1, m) - T(n-2, m-2), T(n, -2) = 0, T(-2, m) = 0, T(n, -1) = 0 = T(-1, m), T(0, 0)=1, T(n, m)= 0 if n<m.
G.f. for m-th column (signed triangle): ((-1)^m)*x^m*Po(m+1, x)/(1-x)^(m+1), with Po(k, x) := sum('binomial(k, 2*j+1)*x^j', 'j'=0..floor(k/2)).
The n-th degree polynomial is the characteristic equation for an n X n tridiagonal matrix with (diagonal = all 2's, sub and superdiagonals all -1's and the rest 0's), exemplified by the 4X4 matrix M = [2 -1 0 0 / -1 2 -1 0 / 0 -1 2 -1 / 0 0 -1 2]. - Gary W. Adamson, Jan 05 2005
sum(m=0..n, a(n,m)*(c(n))^(2*n-2*m) ) = 1/c(n), where c(n) = 2*cos(Pi/(2*n+3)). - L. Edson Jeffery, Sep 13 2013
EXAMPLE
Triangle begins:
1;
1, -2;
1, -4, 3;
1, -6, 10, -4;
1, -8, 21, -20, 5;
1, -10, 36, -56, 35, -6;
1, -12, 55, -120, 126, -56, 7; ...
E.g. fourth row (n=3) {1,-6,10,-4} corresponds to polynomial S(3,x-2)= x^3-6*x^2+10*x-4.
MAPLE
A053123 := proc(n, m)
(-1)^m*binomial(2*n+1-m, m) ;
end proc: # R. J. Mathar, Sep 08 2013
MATHEMATICA
T[n_, m_]:= (-1)^m*Binomial[2*n+1-m, m]; Table[T[n, m], {n, 0, 11}, {m, 0, n}]//Flatten (* Jean-François Alcover, Mar 05 2014, after R. J. Mathar *)
PROG
(PARI) for(n=0, 10, for(k=0, n, print1((-1)^k*binomial(2*n-k+1, k), ", "))) \\ G. C. Greubel, Jul 23 2019
(Magma) [(-1)^k*Binomial(2*n-k+1, k): k in [0..n], n in [0..10]]; // G. C. Greubel, Jul 23 2019
(Sage) [[(-1)^k*binomial(2*n-k+1, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Jul 23 2019
(GAP) Flat(List([0..10], n-> List([0..n], k-> (-1)^k*Binomial(2*n-k+1, k) ))); # G. C. Greubel, Jul 23 2019
CROSSREFS
KEYWORD
easy,sign,tabl
STATUS
approved