The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A172431 Even row Pascal-square read by antidiagonals. 7
 1, 1, 2, 1, 4, 3, 1, 6, 10, 4, 1, 8, 21, 20, 5, 1, 10, 36, 56, 35, 6, 1, 12, 55, 120, 126, 56, 7, 1, 14, 78, 220, 330, 252, 84, 8, 1, 16, 105, 364, 715, 792, 462, 120, 9, 1, 18, 136, 560, 1365, 2002, 1716, 792, 165, 10 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Apart from signs identical to A053123. Mirror of A078812. As a triangle, row n consists of the coefficients of Morgan-Voyce polynomial B(n,x); e.g., B(3,x)=x^3+6x^2+10x+4. As a triangle, rows 0 to 4 are as follows: 1 1...2 1...4...3 1...6...10...4 1...8...21...20...5 See A054142 for coefficients of Morgan-Voyce polynomial b(n,x). Scaled version of A119900. - Philippe Deléham, Feb 24 2012 A172431 is jointly generated with A054142 as an array of coefficients of polynomials v(n,x):  initially, u(1,x)=v(1,x)=1; for n>1, u(n,x)=x*u(n-1,x)+v(n-1,x) and v(n,x)=x*u(n-1,x)+(x+1)*v(n-1,x). See the Mathematica section. - Clark Kimberling, Mar 09 2012 Subtriangle of the triangle given by (1, 0, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 2, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 22 2012 LINKS G. C. Greubel, Rows n = 1..100 of triangle, flattened FORMULA As a decimal sequence: a(n)= 12*a(n-1)- a(n-2) with a(1)=1. [I interpret this remark as: 1, 12=1,2, 143=1,4,3, 1704=1,6,10,4,... taken from A004191 are decimals on the diagonal. - R. J. Mathar, Sep 08 2013] As triangle T(n,k): T(n,k) = T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-2). - Philippe Deléham, Feb 24 2012 As DELTA-triangle T(n,k) with 0<=k<=n: G.f.: (1-y*x)^2/((1-y*x)^2-x). - Philippe Deléham, Mar 22 2012 T(n, k) = GegenbauerC(k, n-k, 1). - Peter Luschny, May 10 2016 As triangle T(n,k): Product_{k=1..n} T(n,k) = Product_{k=0..n-1} binomial(2*k,k) = A007685(n-1)  for n >= 1. - Werner Schulte, Apr 26 2017 As triangle T(n,k) with 1 <= k <= n: T(n,k) = binomial(2*n-k, k-1). - Paul Weisenhorn, Nov 25 2019 EXAMPLE Array begins:   1,  2,  3,  4,  5,  6, ...   1,  4, 10, 20, 35, ...   1,  6, 21, 56, ...   1,  8, 36, ...   1, 10, ...   1, ...   ... Example: Starting with 1, every entry is twice the one to the left minus the second one to the left, plus the one above. For n = 9 the a(9)= 10 solution is 2*4 - 1 + 3. From Philippe Deléham, Feb 24 2012: (Start) Triangle T(n,k) begins:   1;   1,   2;   1,   4,   3;   1,   6,  10,   4;   1,   8,  21,  20,   5;   1,  10,  36,  56,  35,   6;   1,  12,  55, 120, 126,  56,   7; (End) From Philippe Deléham, Mar 22 2012: (Start) (1, 0, 0, 0, 0, 0, ...) DELTA (0, 2, -1/2, 1/2, 0, 0, ...) begins:   1;   1,   0;   1,   2,   0;   1,   4,   3,   0;   1,   6,  10,   4,   0;   1,   8,  21,  20,   5,   0;   1,  10,  36,  56,  35,   6,   0;   1,  12,  55, 120, 126,  56,   7,   0; (End) MAPLE T := (n, k) -> simplify(GegenbauerC(k, n-k, 1)): for n from 0 to 10 do seq(T(n, k), k=0..n-1) od; # Peter Luschny, May 10 2016 MATHEMATICA u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + v[n - 1, x]; v[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x]; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%]    (* A054142 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%]    (* A172431 *) (* Clark Kimberling, Mar 09 2012 *) Table[GegenbauerC[k-1, n-k+1, 1], {n, 15}, {k, n}]//Flatten (* G. C. Greubel, Dec 15 2019 *) PROG (PARI) T(n, k) = sum(j=0, (k-1)\2, (-1)^j*(n-j-1)!*2^(k-2*j-1)/(j!*(n-k)!*(k-2*j-1)!) ); for(n=1, 10, for(k=1, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Dec 15 2019 (MAGMA) F:=Factorial; [ &+[(-1)^j*F(n-j-1)*2^(k-2*j-1)/(F(j)*F(n-k)*F(k-2*j-1)): j in [0..Floor((k-1)/2)]]: k in [1..n], n in [1..15]]; // G. C. Greubel, Dec 15 2019 (Sage) [[gegenbauer(k-1, n-k+1, 1) for k in (1..n)] for n in (1..15)] # G. C. Greubel, Dec 15 2019 (GAP) F:=Factorial;; Flat(List([1..15], n-> List([1..n], k-> Sum([0..Int((k-1)/2)], j-> (-1)^j*F(n-j-1)*2^(k-2*j-1)/(F(j)*F(n-k)*F(k-2*j-1)) )))); # G. C. Greubel, Dec 15 2019 CROSSREFS Cf. A078812, A053123, A007318, A001906 (antidiagonals sums), A007685. Cf. also A054142, A082985. Sequence in context: A093190 A132191 A094437 * A053123 A107661 A126570 Adjacent sequences:  A172428 A172429 A172430 * A172432 A172433 A172434 KEYWORD nonn,tabl AUTHOR Mark Dols, Feb 02 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 30 20:17 EST 2021. Contains 349425 sequences. (Running on oeis4.)