OFFSET
1,3
COMMENTS
From Andrew Howroyd, Apr 22 2017: (Start)
Number of step shifted (decimated) sequences of length n using a maximum of m different symbols. See A056371 for an explanation of step shifts. -
Number of mappings with domain {0..n-1} and codomain {1..m} up to equivalence. Mappings A and B are equivalent if there is a d, prime to n, such that A(i) = B(i*d mod n) for i in {0..n-1}. (End)
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1830
Max Alekseyev, First 20 rows and columns of table
R. C. Titsworth, Equivalence classes of periodic sequences, Illinois J. Math., 8 (1964), 266-270.
EXAMPLE
Array begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
2, 4, 6, 12, 12, 40, 28, 96, 104, 280, 216, 1248, 704, 2800, 4344, 8928, 8232, 44224, 29204, 136032, ...
3, 9, 18, 54, 72, 405, 390, 1944, 3411, 14985, 17802, 139968, 133104, 798525, 1804518, 5454378, 8072532, 64599849, 64573626, 437732424, ...
4, 16, 40, 160, 280, 2176, 2800, 17920, 44224, 263296, 419872, 4280320, 5594000, 44751616, 134391040, 539054080, 1073758360, 11453771776, 15271054960, 137575813120, ...
5, 25, 75, 375, 825, 8125, 13175, 103125, 327125, 2445625, 4884435, 61640625, 101732425, 1017323125, 3816215625, 19104609375, 47683838325, 635787765625, 1059638680675, 11924780390625, ...
MATHEMATICA
a[m_, n_] := (1/EulerPhi[n])*Sum[If[GCD[k, n]==1, m^DivisorSum[n, EulerPhi[#] / MultiplicativeOrder[k, #]&], 0], {k, 1, n}]; Table[a[m-n+1, n], {m, 1, 15}, {n, m, 1, -1}] // Flatten (* Jean-François Alcover, Dec 01 2015 *)
PROG
(PARI) for(i=1, 15, for(m=1, i, n=i-m+1; print1(sum(k=1, n, if(gcd(k, n)==1, m^sumdiv(n, d, eulerphi(d)/znorder(Mod(k, d))), 0))/eulerphi(n)", "))) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Apr 26 2008
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Dec 01 2007, based on email from Max Alekseyev, Nov 08 2007
EXTENSIONS
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Apr 26 2008
Offset corrected by Andrew Howroyd, Apr 20 2017
STATUS
approved