login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A132194
a(n) = 1 if n-th prime is 0 or 2 mod 3, otherwise 0.
2
1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0
OFFSET
1,1
COMMENTS
Equivalently, a(n) = 0 if n-th prime is 1 mod 3, otherwise 1. - Wouter Meeussen, May 21 2019
Binary sequence based on the primes: play it at a slower tempo to appreciate the irregularities.
LINKS
FORMULA
a(n) = 1-A099618(n). - R. J. Mathar, Jun 06 2019
MAPLE
a := n -> 1 - irem(modp(ithprime(n), 3), 2):
seq(a(n), n = 1..105); # Peter Luschny, May 21 2019
MATHEMATICA
Table[If[Mod[Prime[n], 3]== 1, 0, 1], {n, 200}] (* Harvey P. Dale, May 21 2019 *)
PROG
(PARI) {a(n) = if(prime(n)%3==1, 0, 1)}; \\ G. C. Greubel, May 21 2019
(Magma) [(NthPrime(n) mod 3) eq 1 select 0 else 1: n in [1..200]]; // G. C. Greubel, May 21 2019
(Sage)
def a(n):
if (mod(nth_prime(n), 3)==1): return 0
else: return 1
[a(n) for n in (1..200)] # G. C. Greubel, May 21 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Nov 05 2007
EXTENSIONS
Definition corrected by Harvey P. Dale, May 21 2019
STATUS
approved