login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A132194
a(n) = 1 if n-th prime is 0 or 2 mod 3, otherwise 0.
2
1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0
OFFSET
1,1
COMMENTS
Equivalently, a(n) = 0 if n-th prime is 1 mod 3, otherwise 1. - Wouter Meeussen, May 21 2019
Binary sequence based on the primes: play it at a slower tempo to appreciate the irregularities.
LINKS
FORMULA
a(n) = 1-A099618(n). - R. J. Mathar, Jun 06 2019
MAPLE
a := n -> 1 - irem(modp(ithprime(n), 3), 2):
seq(a(n), n = 1..105); # Peter Luschny, May 21 2019
MATHEMATICA
Table[If[Mod[Prime[n], 3]== 1, 0, 1], {n, 200}] (* Harvey P. Dale, May 21 2019 *)
PROG
(PARI) {a(n) = if(prime(n)%3==1, 0, 1)}; \\ G. C. Greubel, May 21 2019
(Magma) [(NthPrime(n) mod 3) eq 1 select 0 else 1: n in [1..200]]; // G. C. Greubel, May 21 2019
(Sage)
def a(n):
if (mod(nth_prime(n), 3)==1): return 0
else: return 1
[a(n) for n in (1..200)] # G. C. Greubel, May 21 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Nov 05 2007
EXTENSIONS
Definition corrected by Harvey P. Dale, May 21 2019
STATUS
approved