login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359779
Dirichlet inverse of A359778, where A359778 is the number of factorizations of n into factors not divisible by p^p for any prime p (terms of A048103).
2
1, -1, -1, 0, -1, 0, -1, 0, -1, 0, -1, 1, -1, 0, 0, 0, -1, 1, -1, 1, 0, 0, -1, 0, -1, 0, 1, 1, -1, 1, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, 1, -1, 1, 1, 0, -1, 0, -1, 1, 0, 1, -1, 1, 0, 0, 0, 0, -1, 0, -1, 0, 1, 0, 0, 1, -1, 1, 0, 1, -1, 0, -1, 0, 1, 1, 0, 1, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1, 1, 0, 1, 0, 0, 0, 0, -1, 1, 1, 0, -1, 1, -1, 0, 1
OFFSET
1,420
COMMENTS
The first term with absolute value larger than 1 is a(420) = -2.
LINKS
FORMULA
a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A359778(n/d) * a(d).
PROG
(PARI)
A359550(n) = { my(f = factor(n)); prod(k=1, #f~, (f[k, 1]>f[k, 2])); };
A359778(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1) && (d<=m) &&
A359550(d), s += A359778(n/d, d))); (s));
memoA359779 = Map();
A359779(n) = if(1==n, 1, my(v); if(mapisdefined(memoA359779, n, &v), v, v = -sumdiv(n, d, if(d<n, A359778(n/d)*A359779(d), 0)); mapput(memoA359779, n, v); (v)));
CROSSREFS
Cf. A048103, A359550, A359778 (Dirichlet inverse).
Sequence in context: A335909 A266591 A372553 * A373834 A132194 A354034
KEYWORD
sign
AUTHOR
Antti Karttunen, Jan 16 2023
STATUS
approved