login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Dirichlet inverse of A359778, where A359778 is the number of factorizations of n into factors not divisible by p^p for any prime p (terms of A048103).
2

%I #8 Jan 17 2023 10:01:09

%S 1,-1,-1,0,-1,0,-1,0,-1,0,-1,1,-1,0,0,0,-1,1,-1,1,0,0,-1,0,-1,0,1,1,

%T -1,1,-1,0,0,0,0,0,-1,0,0,0,-1,1,-1,1,1,0,-1,0,-1,1,0,1,-1,1,0,0,0,0,

%U -1,0,-1,0,1,0,0,1,-1,1,0,1,-1,0,-1,0,1,1,0,1,-1,0,0,0,-1,0,0,0,0,0,-1,1,0,1,0,0,0,0,-1,1,1,0,-1,1,-1,0,1

%N Dirichlet inverse of A359778, where A359778 is the number of factorizations of n into factors not divisible by p^p for any prime p (terms of A048103).

%C The first term with absolute value larger than 1 is a(420) = -2.

%H Antti Karttunen, <a href="/A359779/b359779.txt">Table of n, a(n) for n = 1..65537</a>

%F a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A359778(n/d) * a(d).

%o (PARI)

%o A359550(n) = { my(f = factor(n)); prod(k=1, #f~, (f[k, 1]>f[k, 2])); };

%o A359778(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1) && (d<=m) &&

%o A359550(d), s += A359778(n/d, d))); (s));

%o memoA359779 = Map();

%o A359779(n) = if(1==n,1,my(v); if(mapisdefined(memoA359779,n,&v), v, v = -sumdiv(n,d,if(d<n,A359778(n/d)*A359779(d),0)); mapput(memoA359779,n,v); (v)));

%Y Cf. A048103, A359550, A359778 (Dirichlet inverse).

%K sign

%O 1,420

%A _Antti Karttunen_, Jan 16 2023