OFFSET
1,2
COMMENTS
If a(n) = Product p_i^e_i then p_i > e_i for all i.
Density is 0.72199023441955... = Product_{p>=2} (1 - p^-p) where p runs over the primes. - Charles R Greathouse IV, Jan 25 2012
Range of A276086. Also numbers not divisible by m^m for any natural number m > 1. - Antti Karttunen, Nov 18 2024
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
FORMULA
a(n) ~ kn with k = 1/Product_{p>=2}(1 - p^-p) = Product_{p>=2}(1 + 1/(p^p - 1)) = 1.3850602852..., where the product is over all primes p. - Charles R Greathouse IV, Jan 25 2012
For n >= 1, A377982(a(n)) = n. - Antti Karttunen, Nov 18 2024
EXAMPLE
6 = 2^1 * 3^1 is OK but 12 = 2^2 * 3^1 is not.
625 = 5^4 is present because it is not divisible by 5^5.
MATHEMATICA
{1}~Join~Select[Range@ 120, Times @@ Boole@ Map[First@ # > Last@ # &, FactorInteger@ #] > 0 &] (* Michael De Vlieger, Aug 19 2016 *)
PROG
(Haskell)
a048103 n = a048103_list !! (n-1)
a048103_list = filter (\x -> and $
zipWith (>) (a027748_row x) (map toInteger $ a124010_row x)) [1..]
-- Reinhard Zumkeller, Apr 28 2012
(Scheme, with Antti Karttunen's IntSeq-library)
;; Antti Karttunen, Aug 18 2016
(PARI) isok(n) = my(f=factor(n)); for (i=1, #f~, if (f[i, 1] <= f[i, 2], return(0))); return(1); \\ Michel Marcus, Nov 13 2020
(PARI) A359550(n) = { my(pp); forprime(p=2, , pp = p^p; if(!(n%pp), return(0)); if(pp > n, return(1))); }; \\ (A359550 is the characteristic function for A048103) - Antti Karttunen, Nov 18 2024
(Python)
from itertools import count, islice
from sympy import factorint
def A048103_gen(startvalue=1): # generator of terms >= startvalue
return filter(lambda n:all(map(lambda d:d[1]<d[0], factorint(n).items())), count(max(startvalue, 1)))
CROSSREFS
Complement: A100716.
Positions of 0's in A129251, A342023, A376418, positions of 1's in A327936, A342007, A359550 (characteristic function).
Cf. A048102, A048104, A051674 (p^p), A054743, A054744, A377982 (a left inverse, partial sums of char. fun, see also A328402).
Subsequences: A002110, A005117, A006862, A024451 (after its initial 0), A057588, A099308 (after its initial 0), A276092, A327934, A328832, A359547, A370114, A371083, A373848, A377871, A377992.
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from James A. Sellers, Apr 22 2000
STATUS
approved