OFFSET
0,3
COMMENTS
LINKS
FORMULA
PROG
(PARI)
up_to = (2*210)-1; \\ Must be one of the terms of A343048.
A276085(n) = { my(f = factor(n), pr=1, i=1, s=0); for(k=1, #f~, while(i <= primepi(f[k, 1])-1, pr *= prime(i); i++); s += f[k, 2]*pr); (s); };
A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
A359550(n) = { my(pp); forprime(p=2, , pp = p^p; if(!(n%pp), return(0)); if(pp > n, return(1))); };
A376411list(up_to) = { my(size=up_to, v=vector(size), m=A276086(size), s=1, j); for(i=2, m, if(!(m%i), j=A276085(i); v[j] = s; print1("i=", i, " v[", j, "]=", s", "); ); s += A359550(i)); (v); };
v376411 = A376411list(up_to);
A376411(n) = if(!n, n, v376411[n]);
(PARI)
\\ For incremental computing, less efficient than above:
A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
A359550(n) = { my(pp); forprime(p=2, , pp = p^p; if(!(n%pp), return(0)); if(pp > n, return(1))); };
memoA376411 = Map(); \\ We use k=A276086(n) as our key. kvs will be a list of key-value-pairs sorted into descending order by the key. We search the largest key in it < k, and continue summing from that:
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 13 2024
STATUS
approved