|
|
A057588
|
|
Kummer numbers: -1 + product of first n consecutive primes.
|
|
31
|
|
|
1, 5, 29, 209, 2309, 30029, 510509, 9699689, 223092869, 6469693229, 200560490129, 7420738134809, 304250263527209, 13082761331670029, 614889782588491409, 32589158477190044729, 1922760350154212639069
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
a(n) is congruent to -1 modulo the first n primes. - Michael Engling, Mar 31 2011
Named after the German mathematician Ernst Eduard Kummer (1810-1893). - Amiram Eldar, Jun 19 2021
|
|
LINKS
|
E. E. Kummer, Neuer elementarer Beweis des Satzes, dass die Anzahl aller Primzahlen eine unendliche ist, Monatsber. Preuss. Akad. Wiss., Berlin 1878/9, pp. 777-778. [Collected Papers, II, pp. 669-670, Springer, Berlin-Heidelberg, 1975.] Cited in Mestrovic.
|
|
FORMULA
|
|
|
MAPLE
|
seq(mul(ithprime(k), k=1..n) - 1, n=1..100); # Muniru A Asiru, Jan 19 2018
|
|
MATHEMATICA
|
Table[Product[Prime[k], {k, 1, n}] - 1, {n, 1, 18}] (* Artur Jasinski, Jan 01 2007 *)
FoldList[Times, 1, Prime[Range[20]]]-1 (* Harvey P. Dale, Apr 17 2011 *)
Table[ChineseRemainder[PadRight[{}, n, -1], Prime[Range[n]]], {n, 20}] (* Harvey P. Dale, Jul 01 2017 *)
|
|
PROG
|
(Haskell)
a057588 = (subtract 1) . product . (flip take a000040_list)
(PARI) a(n) = prod(k=1, n, prime(k)) - 1; \\ Michel Marcus, Oct 02 2015
(Python)
from sympy import primorial
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy,nice
|
|
AUTHOR
|
Mario Velucchi (mathchess(AT)velucchi.it), Oct 05 2000
|
|
EXTENSIONS
|
More terms from Larry Reeves (larryr(AT)acm.org), Oct 05 2000
|
|
STATUS
|
approved
|
|
|
|