login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A057585
Area under Motzkin excursions.
5
0, 1, 4, 16, 56, 190, 624, 2014, 6412, 20219, 63284, 196938, 610052, 1882717, 5792528, 17776102, 54433100, 166374109, 507710420, 1547195902, 4709218604, 14318240578, 43493134160, 132003957436, 400337992056, 1213314272395, 3674980475284, 11124919273160
OFFSET
1,3
COMMENTS
a(n) is the sum of areas under all Motzkin excursions of length n (nonnegative walks beginning and ending in 0, with jumps -1,0,+1).
FORMULA
G.f.: (x^2 + 2*x - 1 + (-x+1)*sqrt((x+1)*(1-3*x)))/(2*(3*x-1)*(x+1)*x^2).
Recurrence: (n-2)*(n+2)*a(n) = (n+1)*(4*n-7)*a(n-1) + (2*n^2 - 3*n - 8)*a(n-2) - 3*(n-1)*(4*n-5)*a(n-3) - 9*(n-2)*(n-1)*a(n-4). - Vaclav Kotesovec, Sep 11 2013
a(n) ~ 3^(n+1)/4 * (1-2*sqrt(3)/sqrt(Pi*n)). - Vaclav Kotesovec, Sep 11 2013
MAPLE
G:= (x^2+2*x-1+(-x+1)*sqrt((x+1)*(1-3*x)))/(2*(3*x-1)*(x+1)*x^2): Gser:=series(G, x=0, 30): seq(coeff(Gser, x, n), n=1..26); # Emeric Deutsch, Apr 08 2007
MATHEMATICA
f[x_] := (x^2+2*x-1+(-x+1)*Sqrt[(x+1)*(1-3*x)]) / (2*(3*x-1)*(x+1)*x^2); Drop[ CoefficientList[ Series[ f[x], {x, 0, 26}], x], 1] (* Jean-François Alcover, Dec 21 2011, from g.f. *)
CROSSREFS
Sequence in context: A026126 A026155 A025182 * A333107 A255301 A097128
KEYWORD
easy,nonn,nice
AUTHOR
Cyril Banderier, Oct 04 2000
STATUS
approved