OFFSET
0,3
COMMENTS
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (1,3,-3,-3,3,1,-1).
FORMULA
a(n) = (2*n^3+9*n^2+15*n+5+(3*n^2+n-5)*(-1)^n)/32. - Luce ETIENNE, Nov 18 2014
From Wesley Ivan Hurt, Mar 27 2015: (Start)
G.f.: x*(1 + 2 x - x^2 + x^3)/((x - 1)^4*(x + 1)^3).
a(n) = a(n-1)+3*a(n-2)-3*a(n-3)-3*a(n-4)+3*a(n-5)+a(n-6)-a(n-7). (End)
a(2*n+1) + a(2*n) = (a(2*n+1) - a(2*n))^3. - Greg Dresden, Feb 10 2022
a(2*n+1)^2 - a(2*n)^2 = (n+1)^4. - Adam Michael Bere, Feb 15 2024
MAPLE
A057587:=n->(2*n^3+9*n^2+15*n+5+(3*n^2+n-5)*(-1)^n)/32: seq(A057587(n), n=0..50); # Wesley Ivan Hurt, Mar 27 2015
MATHEMATICA
CoefficientList[Series[x*(1 + 2 x - x^2 + x^3)/((x - 1)^4*(x + 1)^3), {x, 0, 50}], x] (* Wesley Ivan Hurt, Mar 27 2015 *)
Table[(2 n^3 + 9 n^2 + 15 n + 5 + (3 n^2 + n - 5) (-1)^n) / 32, {n, 0, 50}] (* Vincenzo Librandi, Mar 28 2015 *)
LinearRecurrence[{1, 3, -3, -3, 3, 1, -1}, {0, 1, 3, 5, 12, 15, 30}, 50] (* Harvey P. Dale, Nov 29 2022 *)
PROG
(PARI) concat(0, Vec(x*(x^3-x^2+2*x+1)/((x-1)^4*(x+1)^3) + O(x^100))) \\ Colin Barker, Nov 18 2014
(Magma) [(2*n^3+9*n^2+15*n+5+(3*n^2+n-5)*(-1)^n)/32 : n in [0..50]]; // Wesley Ivan Hurt, Mar 27 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Oct 05 2000
STATUS
approved