|
|
A057587
|
|
Nonnegative numbers of form n*(n^2+-1)/2.
|
|
3
|
|
|
0, 1, 3, 5, 12, 15, 30, 34, 60, 65, 105, 111, 168, 175, 252, 260, 360, 369, 495, 505, 660, 671, 858, 870, 1092, 1105, 1365, 1379, 1680, 1695, 2040, 2056, 2448, 2465, 2907, 2925, 3420, 3439, 3990, 4010, 4620, 4641, 5313, 5335, 6072, 6095, 6900, 6924, 7800
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Taking alternate terms gives A027480 and A006003. - Jeremy Gardiner, Apr 10 2005
|
|
LINKS
|
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (1,3,-3,-3,3,1,-1).
|
|
FORMULA
|
a(n) = (2*n^3+9*n^2+15*n+5+(3*n^2+n-5)*(-1)^n)/32. - Luce ETIENNE, Nov 18 2014
From Wesley Ivan Hurt, Mar 27 2015: (Start)
G.f.: x*(1 + 2 x - x^2 + x^3)/((x - 1)^4*(x + 1)^3).
a(n) = a(n-1)+3*a(n-2)-3*a(n-3)-3*a(n-4)+3*a(n-5)+a(n-6)-a(n-7). (End)
a(2*n+1) + a(2*n) = (a(2*n+1) - a(2*n))^3. - Greg Dresden, Feb 10 2022
|
|
MAPLE
|
A057587:=n->(2*n^3+9*n^2+15*n+5+(3*n^2+n-5)*(-1)^n)/32: seq(A057587(n), n=0..50); # Wesley Ivan Hurt, Mar 27 2015
|
|
MATHEMATICA
|
CoefficientList[Series[x*(1 + 2 x - x^2 + x^3)/((x - 1)^4*(x + 1)^3), {x, 0, 50}], x] (* Wesley Ivan Hurt, Mar 27 2015 *)
Table[(2 n^3 + 9 n^2 + 15 n + 5 + (3 n^2 + n - 5) (-1)^n) / 32, {n, 0, 50}] (* Vincenzo Librandi, Mar 28 2015 *)
|
|
PROG
|
(PARI) concat(0, Vec(x*(x^3-x^2+2*x+1)/((x-1)^4*(x+1)^3) + O(x^100))) \\ Colin Barker, Nov 18 2014
(MAGMA) [(2*n^3+9*n^2+15*n+5+(3*n^2+n-5)*(-1)^n)/32 : n in [0..50]]; // Wesley Ivan Hurt, Mar 27 2015
|
|
CROSSREFS
|
Cf. A027480, A006003.
Sequence in context: A260818 A151866 A269928 * A213036 A032438 A025083
Adjacent sequences: A057584 A057585 A057586 * A057588 A057589 A057590
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane, Oct 05 2000
|
|
STATUS
|
approved
|
|
|
|