login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A027480 a(n) = n*(n+1)*(n+2)/2. 51
0, 3, 12, 30, 60, 105, 168, 252, 360, 495, 660, 858, 1092, 1365, 1680, 2040, 2448, 2907, 3420, 3990, 4620, 5313, 6072, 6900, 7800, 8775, 9828, 10962, 12180, 13485, 14880, 16368, 17952, 19635, 21420, 23310, 25308, 27417, 29640, 31980, 34440 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Write the integers in groups: 0; 1,2; 3,4,5; 6,7,8,9; ... and add the groups: a(n) = Sum_{j=0..n} (A000217(n)+j), row sums of the triangular view of A001477. - Asher Auel (asher.auel(AT)reed.edu), Jan 06 2000

With offset = 2, a(n) is the number of edges of the line graph of the complete graph of order n, L(K_n). - Roberto E. Martinez II, Jan 07 2002

Also the total number of pips on a set of dominoes of type n. (A "3" domino set would have 0-0, 0-1, 0-2, 0-3, 1-1, 1-2, 1-3, 2-2, 2-3, 3-3.) - Gerard Schildberger, Jun 26 2003. See A129533 for generalization to n-armed "dominoes". - N. J. A. Sloane, Jan 06 2016

Common sum in an (n+1) X (n+1) magic square with entries (0..n^2-1).

Alternate terms of A057587. - Jeremy Gardiner, Apr 10 2005

If Y is a 3-subset of an n-set X then, for n>=5, a(n-5) is the number of 4-subsets of X which have exactly one element in common with Y. Also, if Y is a 3-subset of an n-set X then, for n>=5, a(n-5) is the number of (n-5)-subsets of X which have exactly one element in common with Y. - Milan Janjic, Dec 28 2007

These numbers, starting with 3, are the denominators of the power series f(x)=(1-x)^2 * log(1/(1-x)), if the numerators are kept at 1. This sequence of denominators starts at the term x^3/3. - Miklos Bona, Feb 18 2009

a(n) is the number of triples (w,x,y) having all terms in {0..n} and satisfying at least one of the inequalities x+y < w, y+w < x, w+x < y. - Clark Kimberling, Jun 14 2012

From Martin Licht, Dec 04 2016: (Start)

Let b(n) = (n+1)(n+2)(n+3)/2 (the same sequence, but with a different offset). Then (see Arnold et al., 2006):

b(n) is the dimension of the Nédélec space of the second kind of polynomials of order n over a tetrahedron.

b(n-1) is the dimension of the curl-conforming Nédélec space of the first kind of polynomials of order n with tangential boundary conditions over a tetrahedron.

b(n) is the dimension of the divergence-conforming Nédélec space of the first kind of polynomials of order n with normal boundary conditions over a tetrahedron. (End)

After a(0), the digital root has period 9: repeat [3, 3, 3, 6, 6, 6, 9, 9, 9]. - Peter M. Chema, Jan 19 2017

LINKS

T. D. Noe, Table of n, a(n) for n = 0..1000

D. N. Arnold, R. S. Falk, R. Winther, Finite element exterior calculus, homological techniques, and applications, Acta numerica 15 (2006), 1-155.

S. Butler, P. Karasik, A note on nested sums, J. Int. Seq. 13 (2010), 10.4.4.

S. Gartenhaus, Odd Order Pandiagonal Latin and Magic Cubes in Three and Four Dimensions, arXiv:math/0210275 [math.CO], 2002.

Index entries for sequences related to dominoes

Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1)

FORMULA

a(n) = a(n-1) + A050534(n) = 3*A000292(n-1) = A050534(n)-A050534(n-1).

a(n) = n*binomial(2+n, 2). - Zerinvary Lajos, Jan 10 2006

a(n) = numbperm(n,3)/2, n >= 2 [where numbperm(n, k) = n!/(n-k)!]. - Zerinvary Lajos, Apr 26 2007

a(n) = A007531(n+2)/2. - Zerinvary Lajos, Jul 17 2006

Starting with offset 1 = binomial transform of [3, 9, 9, 3, 0, 0, 0]. - Gary W. Adamson, Oct 25 2007

From R. J. Mathar, Apr 07 2009: (Start)

G.f.: 3*x/(x-1)^4.

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)

a(n) = Sum_{i=0..n} n*(n - i) + 2*i. - Bruno Berselli, Jan 13 2016

From Ilya Gutkovskiy, Aug 07 2016: (Start)

E.g.f.: x*(6 + 6*x + x^2)*exp(x)/2.

a(n) = Sum_{k=0..n} A045943(k).

Sum_{n>=1} 1/a(n) = 1/2.

Sum_{n>=1) (-1)^(n+1)/a(n) = (8*log(2) - 5)/2 = 0.2725887222397812... (End)

a(n-1) = binomial(n^2,2)/n for n > 0. - Jonathan Sondow, Jan 07 2018

EXAMPLE

Row sums of n consecutive integers, starting at 0, seen as a triangle:

.

    0 |  0

    3 |  1  2

   12 |  3  4  5

   30 |  6  7  8  9

   60 | 10 11 12 13 14

  105 | 15 16 17 18 19 20

MAPLE

[seq(3*binomial(n+2, 3), n=0..37)]; # Zerinvary Lajos, Nov 24 2006

a := n -> add((j+n)*(n+2)/3, j=0..n): seq(a(n), n=0..35); # Zerinvary Lajos, Dec 17 2006

MATHEMATICA

Table[(m^3 - m)/2, {m, 36}] (* Zerinvary Lajos, Mar 21 2007 *)

LinearRecurrence[{4, -6, 4, -1}, {0, 3, 12, 30}, 40] (* Harvey P. Dale, Oct 10 2012 *)

CoefficientList[Series[3 x / (x - 1)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Nov 14 2014 *)

With[{nn=50}, Total/@TakeList[Range[0, (nn(nn+1))/2-1], Range[nn]]] (* Requires Mathematica version 11 or later *) (* Harvey P. Dale, Jun 02 2019 *)

PROG

(PARI) a(n)=3*binomial(n+2, 3) \\ Charles R Greathouse IV, May 23, 2011

(MAGMA) [n*(n+1)*(n+2)/2: n in [0..40]]; // Vincenzo Librandi, Nov 14 2014

CROSSREFS

1/beta(n, 3) in A061928.

Cf. A057587, A006003, A254407.

A row of array in A129533.

Cf. similar sequences of the type n*(n+1)*(n+k)/2 listed in A267370.

Similar sequences are listed in A316224.

Cf. A056923, A281258.

Sequence in context: A331080 A164013 A057671 * A135503 A048088 A064181

Adjacent sequences:  A027477 A027478 A027479 * A027481 A027482 A027483

KEYWORD

nonn,nice,easy

AUTHOR

Olivier Gérard and Ken Knowlton (kcknowlton(AT)aol.com)

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 30 22:47 EST 2020. Contains 338831 sequences. (Running on oeis4.)