login
A027477
Triangle of the square of the normalized, unsigned Stirling matrix of the first kind.
6
1, 3, 1, 23, 12, 1, 330, 215, 30, 1, 7604, 5700, 1035, 60, 1, 256620, 212464, 45675, 3535, 105, 1, 11923260, 10645152, 2582209, 241080, 9730, 168, 1, 729524880, 691560092, 183962268, 19661649, 970200, 23058, 252, 1
OFFSET
1,2
FORMULA
Let A be the lower triangular matrix with entries a[ i, j ] = (-1)^(i+j)*s(i, j)/i! if j<=i, 0 if j>i, where s(i,j) is the Stirling number of the first kind. Let N be the column vector ((i!^2)).
T is the lower triangular matrix A.A.N.
EXAMPLE
First rows of the triangle are:
1,
3,1,
23,12,1,
330,215,30,1,
7604,5700,1035,60,1,
256620,212464,45675,3535,105,1
...
MATHEMATICA
Module[{nmax=8, m}, m=(Table[Table[(-1)^(i+j) StirlingS1[i, j]/i!, {j, 1, nmax}], {i, 1, nmax}]); m=m.m*Table[i!^2, {i, 1, nmax}]; Flatten[Table[Table[m[[i, j]], {j, 1, i}], {i, 1, nmax}], 1]]
CROSSREFS
Cf. A027478, A027479 (third and fourth power).
Sequence in context: A370948 A306619 A335644 * A260780 A243769 A137330
KEYWORD
nonn,tabl,easy
EXTENSIONS
Definition, formula and program edited for clarity by Olivier Gérard, Jan 20 2019
STATUS
approved