OFFSET
1,2
FORMULA
Let A be the lower triangular matrix with entries a[ i, j ] = (-1)^(i+j)*s(i, j)/i! if j<=i, 0 if j>i, where s(i,j) is the Stirling number of the first kind. Let N be the column vector ((i!^2)).
T is the lower triangular matrix A.A.N.
EXAMPLE
First rows of the triangle are:
1,
3,1,
23,12,1,
330,215,30,1,
7604,5700,1035,60,1,
256620,212464,45675,3535,105,1
...
MATHEMATICA
Module[{nmax=8, m}, m=(Table[Table[(-1)^(i+j) StirlingS1[i, j]/i!, {j, 1, nmax}], {i, 1, nmax}]); m=m.m*Table[i!^2, {i, 1, nmax}]; Flatten[Table[Table[m[[i, j]], {j, 1, i}], {i, 1, nmax}], 1]]
CROSSREFS
KEYWORD
AUTHOR
EXTENSIONS
Definition, formula and program edited for clarity by Olivier Gérard, Jan 20 2019
STATUS
approved